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Abstract—Collaborative artificial intelligence (AI) inference
has effectively deployed well-trained AI models at the network
edge to empower immersive intelligent services such as au-
tonomous driving and smart cities. This paper proposes an
integrated sensing-computation-communication (ISCC) scheme
for decentralized multi-task collaborative inference systems. The
proposed scheme connects multiple devices via device-to-device
(D2D) links. Each device first extracts a homogeneous feature
vector from the raw sensory data obtained from the same
wide view of the source target and then aggregates all local
feature vectors using the over-the-air computation (AirComp)
technique to complete a specific inference task. To enhance
spectrum efficiency, the full-duplex communication technique is
adopted, which allows all devices to transmit and receive in the
same frequency band. To suppress the self-interference caused
by full duplex communications and simultaneously enhance all
tasks’ performance, a multi-objective optimization problem is
formulated, where discriminant gain is adopted as the inference
performance metric. The challenges to solve this problem arise
from three aspects: The impact of the self-interference (SI)
channel incurred by full-duplex communication, the precoding
design of each device, and the coupling among subcarrier
allocation, sensing, computation, and communication processes.
To tackle this problem, a quadratic transform and weighted
bipartite matching based alternating maximization approach is
proposed. Numerical results based on jointly completing three
tasks of human motion classification, human gender recognition,
and human age group classification, verify the effectiveness of
the proposed method by showing that the proposed method
outperforms the state-of-the-art successive convex approximation
(SCA) based algorithm.

Index Terms—Edge AI inference, multitask optimization,
integrated sensing-communication-computation, device-to-device
communication, over-the-air computation
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I. INTRODUCTION

The rapid advancement of communication and computing
technologies has enabled intelligent services such as au-
tonomous vehicles and smart factories [1]–[4]. Edge artificial
intelligence (AI) inference, which runs trained models on
data generated by mobile devices, supports these services
by enabling low-latency decision-making [5]. Among various
edge inference paradigms—on-device, on-server, and edge-
device collaborative inference—the latter offers a balanced
approach by deploying lightweight models on devices to
extract features and offloading intensive processing to edge
servers [6]. This enhances privacy and reduces communication
and computation costs. A primary research focus on edge-
device collaborative inference is striking a balance of the trade-
off between communication and computation, such as network
pruning [7], early exiting mechanisms [8], feature compres-
sion [9], progressive transmission [10], designing ultra-low-
latency frameworks [11], and addressing the outage issue [12].
However, most existing methods overlook the task-oriented
nature of edge inference, where the accuracy and efficiency of
the inference task are the ultimate goals rather than reducing
communication distortion [13]. Recent works address this by
proposing multi-view pooling [14], and privacy-preserving
schemes using differential privacy [15].

Nevertheless, different feature elements with the same size
and distortion level may impact the inference accuracy dif-
ferently [6]. The existing works [7], [8], [10], [14], [15]
solely considered the data transmission stage while neglect-
ing the impact of the data acquisition process on inference
performance. To achieve this, a novel task-oriented over-the-
air computation (AirComp) was proposed in [6], where each
edge device obtains a noise-corrupted ground-true wide-view
sensory data of the same target that is further processed
by feature extraction, and the server receives an aggregated
feature vector by over-the-air computation to suppress the
sensing noise for inference. The authors in [16] designed task-
oriented communication strategies in multi-device cooperative
edge inference that leverage information bottleneck (IB) prin-
ciple for task-relevant local feature extraction, incorporating
distributed feature encoding, where the sensing data are ob-
served by multiple devices from different views of the same
target. Different from [6] and [16], the work [17] considered
a partially observable system where the target area’s local
observations overlap and developed an edge-cloud coopera-
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tive inference architecture that decomposes an oracle cloud
inference into a group of component deep neural networks
(DNNs) at the cloud and DNN-aided edge encoders. However,
as highlighted in [18]–[20], the processes of sensing for
data acquisition, communication for information sharing, and
computation for feature extraction and decision making are
intricately linked in edge AI tasks. Ignoring the design of the
sensing module limits the inference performance, especially
in resource-limited scenarios.

To bridge this research gap, authors in [21] first mathe-
matically characterized the coupling mechanism of the three
processes in the multi-device edge-device collaborative sys-
tem and then designed a task-oriented integrated sensing-
communication-computation (ISCC) scheme accordingly. This
design is extended to the case of reusing one sensory data
sample for completing multiple tasks [22] and the case where
different devices sense the same wide view, and thus the tech-
nique of over-the-air computation (AirComp) can be adopted
for communication-efficient feature aggregation [23]. In ad-
dition, authors in [24] developed an integrated sensing, com-
munication, and computation over-the-air (ISCCO) multiple-
input multiple-output (MIMO) framework and addressed joint
optimization of beamformers at both the IoT devices and
the server based on the semidefinite relaxation technique
evaluated by the mean squared error (MSE) criterion. Other
techniques include developing ISCC-based inference schemes
to support mode selection among multiple inference paradigms
[25], enhancing the energy efficiency on devices [26], and in
unmanned aerial vehicle (UAV) networks [27], and so on.

The above ISCC designs rely on a central coordinator, which
is impractical in decentralized scenarios like drone swarms
or cooperative automated driving [28]. In such cases, devices
need to connect and communicate via device-to-device (D2D)
links (see e.g., [29], [30]) to share their features for inference
tasks. Consider the scenario where each device aggregates all
the local feature vectors extracted from the sensory data of
each device. The basic idea of sequentially aggregating local
features to all devices from others causes a high communica-
tion overhead. To mitigate this, the technique of full-duplex
(FD) communication is integrated with AirComp by [31] to
allow all devices to transmit and receive signals simultane-
ously. Taking advantage of the one-shot aggregation, the above
FD AirComp technique is adopted in this work. However,
the technique in [31] ignores the task-oriented property and
the coupling mechanism among sensing, communication, and
computation in edge inference tasks, making it difficult to
achieve the high-performance requirements.

To tackle these shortages, in this work, we propose a
decentralized multi-task inference framework that integrates
sensing, communication, and FD AirComp. All devices extract
local feature vectors from their data wirelessly sensed from
the same wide view of a target and employ FD AirComp
for simultaneous feature sharing and aggregation to complete
inference tasks. Particularly, an orthogonal frequency division
multiplexing (OFDM) based broadband channel is considered,
where each subcarrier is assigned to one dimension of fea-
ture element for AirComp aggregation such that the most
important feature elements are assigned to subcarriers with

good channels across all devices, thereby further improving
inference performance. The performance enhancement of all
tasks faces two technical challenges. One is the tight coupling
of sensing, communication, and on-device computation. The
distortion incurred by these three processes impacts the quality
of the received data of each device which determines the
inference accuracy, but they compete for network resources
for enhancing their respective qualities. The other arises from
the competition among different tasks. Since different feature
elements have varying influences on different tasks, the pre-
coding of AirComp on each device is hard to meet the feature
elements transmission requirements of all tasks with high qual-
ity. To overcome these challenges, we propose a decentralized
ISCC system for multi-task collaborative inference. The key
contributions are summarized as follows.

• Novel decentralized ISCC framework for multitask
collaborative inference: In this system, each device in
this decentralized ISCC system is equipped with a dual-
functional-radar-communication (DFRC) system includ-
ing multiple transmit and receive antennas used both
for sensing and communication. All devices sense the
target in the same wide view and derive noisy sensory
data through transmitting a frequency modulation con-
tinuous wave (FMCW) signal. Task-specific local feature
extraction is conducted at each device to facilitate the
fulfillment of each task, which are then precoded before
they are shared through full-duplex communication and
AirComp [32] over an OFDM-based broadband channel.
To enhance inference performance, each OFDM subcar-
rier is assigned to a unique feature element during FD
AirComp. The discriminant gain metric [21] is adopted to
quantify inference accuracy, theoretically characterizing
the impact of each feature transmission procedure.

• Joint Subcarrier, Sensing Power Allocation with Mul-
ticast and Receive Beamforming: Building on the pro-
posed framework, we formulate a joint optimization prob-
lem of subcarrier allocation, sensing power allocation,
multicast beamforming, and receive beamforming under
the discriminant gain metric. To address the challenges
introduced by self-interference (SI) channels and the cou-
pling between sensing, computation, and communication,
we first design multicast beamforming vectors to exploit
SI channels and aggregate local and received features.
Then, we jointly design the receive beamformers and
propose an alternating optimization approach that lever-
ages quadratic transform and weighted bipartite match-
ing to tackle the multiple-ratio fractional programming
(FP) problem with mixed-integer non-convex constraints,
yielding an efficient sub-optimal solution.

• Performance Evaluation: To evaluate the effectiveness
of the proposed framework and algorithm, we perform ex-
tensive experiments on the University of Glasgow Radar
Signature dataset [33], with different inference models,
i.e., multi-layer perception (MLP) neural network and
K-Nearest Neighbour (KNN) models. The experiment
results validate that our proposed method outperforms the
successive convex approximation (SCA) based algorithm.
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Fig. 1. The system architecture of the proposed multi-task ISCC system.

The remainder of this paper is organized as follows: Section
II introduces the system model of decentralized full-duplex
ISCC collaborative inference. Section III formulates the op-
timization problem with the objective of discriminant gain
maximization. Section IV proposes a quadratic transform and
weighted bipartite matching based alternating maximization
method for the optimization problem. In Section V, we present
numerical results to verify the effectiveness of the proposed
method, followed by the conclusion in Section VI.

II. SYSTEM MODEL

Consider a decentralized network of K ISAC devices for
co-inference between devices with a central server not always
available for devices, as illustrated in Fig. 1. Each device
has a DFRC system containing Nt transmit antennas and Nr
receive antennas. To complete the inference task, the proposed
decentralized ISCC system operates through four sequential
phases as shown in Fig. 2 and elaborated below.

1) Sensing: Each device transmits an FMCW signal and
receives the echo signal reflected from the target.

2) Feature extraction: The raw data are processed through
clutter cancellation and principal component analysis
(PCA) for task-specific feature extraction, followed by
the feature transmission over OFDM subcarriers.

3) Feature sharing and aggregation via FD AirComp: Uti-
lizing full-duplex communication and the AirComp tech-
nique, every device multicasts its local features to all

other devices and aggregates features from other devices
simultaneously to derive a denoised global feature vec-
tor.

4) Multi-task inference: Finally, the aggregated feature vec-
tor of each device is fed into a pre-trained AI model to
jointly complete the multi-task inference.

Note that the timeline diagram of different phases during
latency T in Fig. 2 shows that the sensing phase and com-
munication phase of each device k are operated in separate
time frames. In particular, since FMCW is used for sensing,
and there is no self-interference at the sensing phase. At the
communication phase, the OFDM technique is leveraged to
transmit all feature elements at the same time during feature
sharing and aggregation. All M dimensions of local feature
vectors are transmitted in M orthogonal subcarriers, where
the m-th dimension of local feature vectors is selected and
transmitted via the i-th subcarrier OFDM frequency subcarrier.
Given that the duration to transmit one feature element is
significantly shorter than the channel coherence time [34],
channels are assumed to be static within a single time slot.
All devices are assumed to have the channel state information
(CSI) of links connecting to all other devices. This can be
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Fig. 2. Decentralized integrated sensing-computation-communication for multi-task inference framework.

achieved by a logical control node1 collecting global informa-
tion or exploiting channel reciprocity and efficient feedback
[36], where the required training overhead is assumed to be
negligible compared to the transmitted features. Finally, the
aggregated feature vector is fed into a pre-trained AI model
to perform the inference task.

A. Sensory Signal Processing and Feature Extraction

We adopt the models for sensing signal processing and
feature extraction as proposed in [21]. During the radar sensing
stage, each device senses the target in the same wide view
by transmitting an FMCW signal sk(t) using one transmit
antenna in total sensing time Ts and receives the echo signal
reflected from the target using Nr receive antennas. Note
that employing a single transmit antenna for radar sensing
avoids the need to address mutual interference among multiple
transmitters, while also reducing power consumption during
the sensing phase. The received signal of ISAC device k
reflected from the target is given by

rk(t) = uk(t) +

J∑
j=1

vk,j(t) + nr(t), (1)

where uk(t) = hs,k (t)sk(t − τ) is the desired sig-
nal for completing the inference task with hs,k(t) =

[h
(1)
s,k(t), . . . , h

(Nr)
s,k (t)]H being the reflection coefficient vector

of the target and τ being the round-trip delay, vk,j(t) =
cr,k ,j (t)sk(t − τj) is the clutter of j-th indirect reflection
path with cs,k ,j (t) = [C

(1)
s,k ,j (t), . . . , C

(Nr)
s,k ,j (t)]H being the

round-trip coefficient vector of path j and τj being the delay
of the j-th path, and nr(t) is the white Gaussian noise. It
is assumed that hs,k (t) and cs,k ,j (t) are estimated before
the inference task. The desired signal from the echo signal
reflected from the target is polluted by the additive sensing
clutter incurred by higher-order (indirect) reflected paths and
sensing noise. Subsequently, the following processing steps
are taken at each n-th receive antenna to create a training data
sample: sampling and reshaping into a matrix, SVD-based
linear filter for clutter cancellation, time-frequency analysis

1The logical control node refers to a network device assigned to manage
global information [35]. Different from a central server adopted to aggre-
gate devices’ features, the logical control node only requires little essential
network information, whose signaling overhead is much smaller than feature
transmission.

using short-time Fourier transform (STFT), and vectorization
and normalization. Following [6], [21], the PCA-based linear
extractor is used to extract the local feature vector from clutter-
canceled sensory data. The PCA is pre-performed at a server
before the inference task using the training dataset. Then,
the template of the M principal eigen-subspace is sent to all
devices for extracting the local feature vectors at n-th receive
antenna {r̄(n)

k ∈ RM} with M being the number of extracted
feature elements. Since the clutter cancellation and feature
extraction processes are linear, the m-th feature element of
r̄

(n)
k is given by

r̃
(n)
k (m) = ũ

(n)
k (m)+

J∑
j=1

ṽ
(n)
k,j (m)+n(n)

r (m),m = 1, . . . ,M,

(2)
where ũ(n)

k (m) is the ground-truth of feature m, ṽ(n)
k,j (m) is

the clutter of j-th path in J paths, n(n)
r (m) is the noise with

Gaussian distribution N
(
0, σ2

r

)
. Next, each feature element

of device k is normalized by its sensing power Ps,k and the
normalized feature element m at n-th receive antenna is

x
(n)
k (m) =

r̃
(n)
k (m)√
Ps,k

= x(n)(m) + c
(n)
s,k (m) +

n
(n)
r (m)√
Ps,k

, (3)

where x(n)(m) = ũ
(n)
k (m)/

√
Ps,k is the normalized ground-

truth feature and c(n)
s,k (m) =

∑J
j=1

(
ṽ

(n)
k,j (m)/

√
Ps,k

)
denotes

the normalized clutter. Since clutter is rich scattering, J is very
large, and c

(n)
s,k (m) follows zero-mean Gaussian distribution

N
(

0, σ2
s,k ,n

)
according to the central limit theorem. Finally,

we select the receive antenna index n∗ that has minimum
σ2
s,k ,n , i.e., n∗ = arg minσ2

s,k ,n , for feature transmission

x
(n∗)
k (m) = x(n∗)(m) + c

(n∗)
s,k (m) +

n
(n∗)
r (m)√
Ps,k

. (4)

For the following, we omit the superscript (n∗) for notation
simplicity. Therefore,

xk(m) = x(m) + cs,k (m) +
nr(m)√
Ps,k

(5)

is adopted for feature transmission, where σs,k , σs,k ,n∗ is
the standard deviation of cs,k (m).

Consider a classification task deployed on device k with Lk
classes. Following [6], [21], the ground-truth feature vector
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x = {x(m)}Mm=1 is assumed to follow a Gaussian mixture
distribution. Since PCA is performed, different elements of
the ground-truth feature vector are independent. Specifically,
the distribution of element x(m) at k-th device is given as

fk(x(m)) =
1

Lk

Lk∑
`=1

f`(x(m)), (6)

where f`(x(m)) = N
(
µ`,m, σ

2
m

)
denotes the probability

density function of the Gaussian component associated with
the `-th class, in which µ`,m represents the centroid of class `
and σ2

m denotes the corresponding variance. These parameters
are pre-estimated from the training dataset. Based on the
expression in (6) and the distribution for clutter and noise,
the distribution of the m-th local feature element at device k
can be derived as

xk(m) ∼ 1

Lk

Lk∑
`=1

N
(
µ`,m, σ

2
m + σ2

s,k +
σ2
r

Ps,k

)
. (7)

B. Broadband Decentralized AirComp

As illustrated in Fig. 1, in the decentralized co-inference
system, every device needs to multicast and receive local
features with all other devices to collect a denoised feature.
To satisfy the demand of sharing features with every other
device as described above, the technique of AirComp [32] has
been used for transmitting and aggregating the feature ele-
ments over each subcarrier. Besides, conventional sequential
feature aggregation across devices results in communication
latency scaling linearly with the number of devices K. To this
end, we leverage full-duplex communication ( [31], [37]) for
feature aggregation. In this setup, devices employ multicast
beamforming to transmit their local features in parallel while
simultaneously receiving the aggregated signals from other
devices. In this way, our approach reduces the transmission
latency to the order of O(K) compared to the conventional
method. Time synchronization is assumed to be achieved
through a common reference clock.

Specifically, the OFDM mechanism is leveraged where the
bandwidth of the system consists of M orthogonal subcarriers
aggregating M dimensions of local feature vectors. Each
device is equipped with Nt transmit and Nr receive antenna
arrays. However, the effects of the frequency-selective fading
make different subcarriers experience different channel gains.
We denote H

(i)
j,k ∈ CNr×Nt as the the channel gain on the i-

th subcarrier between device j and device k. Also, we define
a

(i)
m ∈ {0, 1} as the subcarrier allocation indicators where
a

(i)
m = 1 represents that the i-th subcarriers is allocated for

the transmission of the m-th feature dimention, otherwise
a

(i)
m = 0. For each device j, the local feature element xj(m)

is modulated by a multicast beamformer pj,m ∈ CNt before it
is transmitted over the MIMO channel to all other devices. We

assume all devices have the perfect CSI. The received signal
vector at device k is given by

yk(m) =

M∑
i=1

a(i)
mH

(i)
k,kpk,mxk(m)︸ ︷︷ ︸

Residual SI

+

K∑
j=1,j 6=k

M∑
i=1

a(i)
mH

(i)
j,kpj,mxj(m) + wk(m).

(8)

In particular, H(i)
k,k, i = 1, . . . ,M , represents the channel gain

of device k’s self-interference channel. Here, wk(m) ∈ CNr

is the additive white Gaussian noise which follows distri-
bution wk(m) ∼ CN (0, N0INr

). To aggregate the features
{xj(m)}j 6=k transmitted from other devices with its local fea-
ture xk(m), the multicast beamforming is designed to exploit
the self-interference channel. As stated, the channel matrix
H

(i)
j,k remains invariant throughout the feature aggregation.
After receiving the feature, a receive beamformer fk,m ∈

CNr is applied to extract the feature. By taking the real part
of the processed signal, the m-th aggregated feature element
at device k is recovered

x̂k(m) = <
[
fHk,myk(m)

]
= <

 K∑
j=1

M∑
i=1

fHk,ma
(i)
mH

(i)
j,kpj,mxj(m)

+ <
[
fHk,mwk(m)

]
.

(9)
The distribution of x̂k(m) can also be derived as

fk (x̂k(m)) =
1

Lk

Lk∑
`=1

f` (x̂k(m)) , (10)

where
f` (x̂k(m)) = N

(
µ̂`,k,m, σ̂

2
k,m

)
(11)

with

µ̂`,k,m = µ`,m<

 K∑
j=1

M∑
i=1

fHk,ma
(i)
mH

(i)
j,kpj,m

 , (12)

and

σ̂2
k,m = σ2

m

<
 K∑
j=1

M∑
i=1

fHk,ma
(i)
mH

(i)
j,kpj,m

2

+

K∑
j=1

(
<

[
M∑
i=1

fHk,ma
(i)
mH

(i)
j,kpj,m

])2(
σ2
s,j +

σ2
r

Ps,j

)
+
N0

2
‖fk,m‖2.

(13)

Note that (12) and (13) characterize the impact of FD commu-
nication and aggregation on the x̂k(m). In particular, consider
imperfect CSI, e.g., Ĥ(i)

j,k = H
(i)
j,k + ∆H

(i)
j,k, with Ĥ

(i)
j,k being

estimated channel and ∆H being the statistic CSI error. If each
element of Ĥ(i)

j,k satisfies i.i.d. CN (0, σ2
∆H) and is independent

of xj(m), one can reformulate (12) and (13) for further
derivation.
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III. PROBLEM FORMULATION

A. Discriminant Gain

In this work, we employ the summation of pair-wise dis-
criminant gains as introduced in [23] to balance inference
performance by evaluating the distribution of received features
characterized in (10). For a given classification task, the pair-
wise discriminant gain between any two classes (`, `′) is
quantified by the symmetric Kullback–Leibler (KL) diver-
gence between their corresponding Gaussian distributions [10].
Specifically, for the m-th feature component received from
device k, the discriminant gain between class ` and class `′ is
defined as

G`,`′,k,m ,DKL [f` (x̂k(m)) ‖f`′ (x̂k(m))]

+DKL [f`′ (x̂k(m)) ‖f` (x̂k(m))] ,

=

∫
x̂k(m)

[
f` (x̂k(m)) log

[
f` (x̂k(m))

f`′ (x̂k(m))

]
+ f`′ (x̂k(m)) log

[
f`′ (x̂k(m))

f` (x̂k(m))

]]
dx̂k(m),

(14)
where DKL [p‖q] denotes the KL divergence between proba-
bility distributions p and q. Note that the discriminant gain can
be adapted to other popular tasks like regression by quantizing
a regression problem into a classification problem. Specifically,
instead of pinpointing the value, estimate the probability of its
value belonging to a bin, i.e., classify each sample into a bin.
This reformulation of regression as classification has also led
to superior performance in the fields of age estimation and
pose estimation [38]. Moreover, we assume that each element
of the latent vector follows a Gaussian distribution, which has
already been supported by [21], [22], [23]. This assumption
is theoretically supported by the central limit theorem and the
maximum-entropy property of the Gaussian distribution. It is
also a standard modeling choice in latent-variable frameworks
such as variational autoencoders and factor analysis, as it
enables analytically tractable and stable inference. Although
real data may deviate from Gaussianity, this approximation is
widely adopted in practice and can be extended to Gaussian
mixtures when greater flexibility is required.

The metric G`,`′,k,m effectively captures how distinguish-
able the two classes ` and `′ are in the feature domain. A
higher value of this gain suggests that the respective class
distributions are more separable, which directly contributes to
improved classification accuracy. Consequently, enhancing the
pair-wise discriminant gain helps to better resolve the most
confusable class pairs. Given that individual features x̂k(m)
are statistically independent, the overall discriminant gain for
the feature vector x̂k = [x̂k(1), . . . , x̂k(m), . . . , x̂k(M)]T is
expressed as

Gk (x̂k) ,
M∑
m=1

Lk∑
`′=1

∑
`<`′

G`,`′,k,m. (15)

Our objective is to maximize the sum of the pair-wise
discriminant gains of all devices

max

K∑
k=1

Gk (x̂k) . (16)

In particular, the reason we use discriminant gain as the
performance metric for inference tasks rather than MMSE
is that the traditional MMSE criterion minimizes the overall
distortion between noisy and ground-truth features but does
not account for the varying significance of different features
[21]. For instance, in a binary classification problem, dis-
tortions in different feature dimensions can lead to unequal
impacts on classification accuracy, revealing the limitation
of MMSE. To address this, the discriminant gain based on
symmetric KL divergence is adopted, as it better reflects the
relative importance of features by measuring the centroid
distance normalized by covariance. This results in improved
class separability and higher inference accuracy.

ISAC devices are typically designed for ease of deployment,
which often results in limited energy and computational ca-
pabilities [21], [23]. For any given device k, the total energy
consumption consists of three primary components. The first
component is the sensing energy, expressed as Ps,kTs,k , where
Ps,k is the sensing power and Ts,k is the fixed sensing duration.
The second component is the constant energy required for
local feature extraction, denoted as Ep,k . The third component
accounts for the transmission energy required to send the m-th
feature element via AirComp, with the corresponding transmit
power given by Pc,k (m) = pHk,m E

[
xk(m)xk(m)H

]
pk,m.

Since the distribution of xk(m) is specified in (6), its vari-
ance is fixed and denoted by Xk(m) = E

[
xk(m)xk(m)H

]
,

which is known by the devices as a prior information via
estimation of the offline data samples.

B. Problem Formulation

The discriminant gain between class ` and `′ of the m-th
received feature element on device k is formulated as

G`,`′,k,m =
(µ̂`,k,m − µ̂`′,k,m)

2

σ̂2
k,m

, (17)

where µ̂`,k,m and σ̂2
k,m are defined in (12) and (13). Ac-

cordingly, the problem of maximizing the sum of pair-wise
discriminant gains in (17) under constraints can be formulated
as P1:

max
{Ps,k},{a(i)m }
{fk,m},{pj,m}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

G`,`′,k,m (18a)

s.t. Ps,kTs,k + Ep,k + Tc

M∑
m=1

‖pk,m‖2Xk(m) ≤ Ek

(18b)

a(i)
m ∈ {0, 1}, ∀m, i (18c)
M∑
i=1

a(i)
m = 1, ∀m (18d)

M∑
m=1

a(i)
m = 1, ∀i (18e)

‖fk,m‖2 = 1, ∀k,m (18f)

where (18b) is the energy consumption constraint of device
k with Ek being the energy threshold of device k and Tc is
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the duration time of AirComp. The constraints (18c)∼(18e)
stand for the subcarrier allocation constraints, which ensure
that one subcarrier is exactly assigned to the transmission of
one dimension. Also, due to the energy limitation, the receive
beamforming vector fk,m is constrained with ‖fk,m‖2 = 1
(18f) only to control the angle of arrival (AoA).

IV. JOINT SUBCARRIER AND SENSING POWER
ALLOCATION WITH MULTICAST AND RECEIVE

BEAMFORMING

The objective function (18a) is to maximize the sum of
several fractional functions, which is a mixed integer nonlinear
sum-of-ratios problem that is difficult to solve with traditional
optimization methods. In this section, we will design an
effective algorithm to solve the problem formulated above.
We will first transform P1 into P2 to simplify the formulas
by leveraging subcarrier allocation constraints. Then, an alter-
nating iterative method is developed to derive a sub-optimal
solution to problem P2.

A. Problem Transformation

It is shown in (18) that the form of the objective is
highly complicated. To fully exploit the subcarrier allocation
constraints, we propose the following Lemma to simplify the
objective (17).

Lemma 1. By leveraging the constraints of subcarrier alloca-
tion indicators (18c)∼(18e), the equivalent discriminant gain
of (17) can be reformulated as

G`,`′,k,m =
(µ̃`,k,m − µ̃`′,k,m)

2

σ̃2
k,m

, (19)

where (µ̃`,k,m − µ̃`′,k,m)
2 is

(µ`,m−µ`′,m)2
M∑
i=1

a(i)
m ·

<
 K∑
j=1

fHk,mH
(i)
j,kpj,m

2

, (20)

σ̃2
k,m = σ2

m

M∑
i=1

a(i)
m ·

<
 K∑
j=1

fHk,mH
(i)
j,kpj,m

2

+

M∑
i=1

a(i)
m ·

K∑
j=1

(
<
[
fHk,mH

(i)
j pj,m

])2
(
σ2
s,j +

σ2
r

Ps,j

)
+
N0

2
‖fk,m‖2.

(21)

Proof. See in Appendix A.

Lemma (21) decouples the subcarrier allocation indicators
a

(i)
m , which transforms the P1 into:

P2 max
{Ps,k},{a(i)m }
{fk,m},{pj,m}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

(µ̃`,k,m − µ̃`′,k,m)
2

σ̃2
k,m

(22a)
s.t. (18b) ∼ (18f).

The transformation from P1 to P2 exploits the strict sub-
carrier allocation constraints (18c)∼(18e), which enforce a

one-to-one mapping between feature elements and subcarriers.
This property eliminates cross-product terms and enables the
subcarrier allocation sub-problem to be reformulated as a
tractable linear assignment problem. It is observed that the
objective in P2 is simplified but still appears in a sum of
multiple-ratio mixed integer problem with the tightly coupled
optimization variables, which is hard to deal with. We propose
an alternating maximization technique to solve this problem
in the following.

B. Subcarrier Allocation

For the fixed sensing power {Ps,k}, fk,m and {pj,m}, we
can arrive at the following problem

P3 max
{a(i)m }

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

G̃`,`′,k,m

s.t. (18c) ∼ (18e),

(23)

where

G̃`,`′,k,m =
(µ`,m − µ`′,m)2

∑M
i=1 a

(i)
m d̃

(i)
k,m

σ2
m

∑M
i=1 a

(i)
m d̃

(i)
k,m +

∑M
i=1 a

(i)
m c̃

(i)
k,m + N0

2 ‖fk,m‖2
(24)

with

d̃
(i)
k,m ,

<
 K∑
j=1

fHk,mH
(i)
j,kpj,m

2

,

c̃
(i)
k,m ,

K∑
j=1

(
<
[
fHk,mH

(i)
j,kpj,m

])2
(
σ2
s,j +

σ2
r

Ps,j

)
.

(25)

Observing that for each pair (k,m), we can sum the `, `′ of
G̃`,`′,k,m, which yields

P4 max
{a(i)m }

K∑
k=1

M∑
m=1

Ḡk,m s.t. (18c) ∼ (18e), (26)

where

Ḡk,m =

∑Lk

`′=1

∑
`<`′(µ`,m − µ`′,m)2 ·

∑M
i=1 a

(i)
m d̃

(i)
k,m

σ2
m

∑M
i=1 a

(i)
m d̃

(i)
k,m +

∑M
i=1 a

(i)
m c̃

(i)
k,m + N0

2 ‖fk,m‖2
.

(27)
From the above transformation, we see that both the numerator
and denominator of (27) is a linear combination (plus bias) of
{a(i)
m }. We can rewrite (27) as

Ḡk,m =

∑M
i=1 a

(i)
m d̄

(i)
k,m∑M

i=1 a
(i)
m c̄

(i)
k,m + N0

2 ‖fk,m‖2
(28)

where

d̄
(i)
k,m =

Lk∑
`′=1

∑
`<`′

(µ`,m − µ`′,m)2d̃
(i)
k,m,

c̄
(i)
k,m = σ2

md̃
(i)
k,m + c̃

(i)
k,m,

(29)

Note that the Ḡk,m still remains a fractional form and the
objective function is still a mixed integer sum of multi ratio
problem with highly coupled optimization variables. Con-
ventional optimization methods that transform the fractional
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programming into non-fractional problems like Dinkelbach or
Charnes-Cooper are not suitable to solve this problem since
both the denominator numerator of the objective function
contain a summation over all i. To this end, we will show that
the (26) can be transformed into a linear assignment problem.

Lemma 2. By leveraging the binary assignment constraints
(18c) ∼ (18e), the objective function of P4 can be transformed
into a linear assignment problem:

max
A

M∑
m=1

M∑
i=1

a(i)
m w(i)

m s.t. (18c) ∼ (18e), (30)

where

w(i)
m =

K∑
k=1

d̄
(i)
k,m

c̄
(i)
k,m + N0

2 ‖fk,m‖2
, (31)

and A is an M ×M binary assignment matrix containing all
the entries a(i)

m that satisfies the constraints (18c)∼(18e).

Proof. The proof can be found in Appendix B.

Observing Lemma 2, we see that A is a permutation matrix
since a feasible A has exactly one nonzero entry per row and
per line and the entry is equal to 1. It is hard to work with
discrete variables through a brute-force approach due to its
high computational cost.

To solve this linear sum assignment problem, we leverage
the idea of a graph theory model. Denote G = (U ,V, E) as
a bipartite and weighted graph where U and V are the two
non-overlapping sets of M nodes such that there are no edges
with both endpoints in U and no edges with both endpoints in
V i.e., |U| = |V| = M and U ∩ V = ∅. While U and V stand
for the row (element) vertex and column (subcarrier) vertex,
respectively; E represents a set of edges connecting U to V ,
where the cost of the (m, i) ∈ E edge is w(i)

m . Here, a matching
on a bipartite graph G is a subset of edges where no two edges
are incident to the same node. The assignment problem, also
known as weighted bipartite matching problem, is to find a
perfect matching with the minimum total weight, i.e., find a
subset of edges such that each vertex belongs to exactly one
edge and the sum of the costs of corresponding edges is a
minimum. Note that the maximum objective of assignment
problem can be transformed by setting w̃

(i)
m = max{w(i)

m } −
w

(i)
m for ∀m, i to ensure that the weights is nonnegtive, i.e.,

P5 min
A

M∑
m=1

M∑
i=1

a(i)
m w̃(i)

m s.t. (18c) ∼ (18e). (32)

By introducing the dual variables um,m = 1, . . . ,M and
vi, i = 1, . . . ,M , the dual problem of P5 is

max

M∑
m=1

um+

M∑
i=1

vi s.t. um+vi ≤ w̃(i)
m , m, i = 1, . . . ,M.

(33)
On the one hand, it is easy to prove that the objective of (33)
is not less than that of P5. On the other hand, based on the
complementary slackness condition, the solutions of P5 and
(33) are both optimal if and only if

a(i)
m (w̃(i)

m − um − vi) = 0, (34)

which indicates that if um + vi = w̃
(i)
m then a(i)

m = 1, and the
edge is tight. Conversely, if the current edge satisfies um +

vi < w̃
(i)
m , then a(i)

m = 0. Based on (34), we can successively
builds maximum (perfect) matchings on a equality graph G′ =

(U ,V; E ′) that satisfies um + vi = w̃
(i)
m , (m, i) ∈ E ′.

To find the perfect matching on G′, we first introduce basic
graph theoretic ideas [39], [40]. An alternating path in a
bipartite graph with respect to a matching M is a path whose
edges are alternately inM and not inM. An augmenting path
is a simple alternating path with its initial and terminal edges
being not assigned, whose unassigned edges are one more than
the assigned edges. The key is searching for an augmenting
path in the current partial assigned bipartite graph that only
contains rigid edges (m, i), i.e., um + vi = w̃

(i)
m , (m, i) ∈ E ′.

As soon as an augmenting path P is found, we can increase
the cardinality of the current matching M by one through
interchanging the edges inM and not inM along P . If there
is no augmenting path with respect to M, we find the perfect
(maximal) matching on G′. However, at the current step, if it is
not possible to increase the cardinality of the current matching
and the matching on M edges of G′ is not perfect, the update
to the dual variables is performed. Here, we denote Ū as the
set of vertices in U that were visited during the last traversal
of finding the maximum matching in a equality graph, V̄ as
the corresponding set of visited vertices in V , and

∆i = min
m∈Ū
{w̃(i)

m − um − vi}, δ = min
i/∈V̄

∆i;

um ← um + δ, ∀m ∈ Ū ; vi ← vi − δ, ∀i ∈ V̄.
(35)

Lemma 3. This update (35) is designed in order to have the
following effects: 1) all edges of the matching of G′ will remain
rigid; 2) at least one edge leaving from Ū to the edges that
not in V̄ are added to current G′; 3) all edges outside the
matching of G′ remain rigid; 4) δ > 0.

Proof. See in Appendix C.

The weighted bipartite matching approach for solving P5
is proposed in Algorithm 1.

The computational complexity of the inner loop (lines 4
to 20) is O(M2) since each iteration is performed under
different cur and requires O(M), and computing each ∆i

requires O(M) time complexity. The main loop of Algorithm
1 is executed in O(M) times, because of selecting a different
m /∈ T . Therefore, algorithm 1 has an overall O(M3)
complexity.

C. Alternating Maximization

For each fixed pair m, there is only one i that satisfies
a

(i)
m = 1, thus we further introduced two new functions from
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Algorithm 1 Weighted Bipartite Matching Approach for Sub-
carrier Allocation (32)

Input: Weights w̃(i)
m

Output: Optimal subcarrier assignment {a(i)
m } obtained from

row_of[i]
1: Initialization: um = 0, vi = 0; selected row of i ∈ V
row_of[i]← 0,∀i; set of matched row vertices T ← ∅

2: while matching in G is not perfect do
3: Select m /∈ T ; set ∆i ← ∞, pi ← −1, V̄ ← ∅,

Ū ← ∅, cur ← m, free col← null
4: while free col = null do
5: Ū ← Ū ∪ {cur}
6: for each i /∈ V̄ do
7: r ← w̃

(i)
cur − ucur − vi

8: if r < ∆i then ∆i ← r, pi ← cur
9: if ∆i = 0 then V̄ ← V̄ ∪ {i}

10: end for
11: if no new i ∈ V̄ with pi 6= −1 then
12: Update um, vi via (35)
13: for each i /∈ V̄ do
14: ∆i ← ∆i − δ
15: if ∆i = 0 then V̄ ← V̄ ∪ {i}
16: end for
17: end if
18: Select i ∈ V̄ with pi 6= −1
19: if row_of[i] = 0 then free col ← i else cur ←

row_of[i]
20: end while
21: T ← T ∪ {m}
22: Reconstruct augmenting path from m to free col and

update row_of[i]
23: end while

(20) and (21) as

Ai
∗

`,`′,k,m(fk,m, {pj,m}j)

= (µ`,k,m − µ`′,k,m)2

<
 K∑
j=1

fHk,mH
(i∗(m))
j,k pj,m

2

,

(36)

Bi
∗

k,m (fk,m, {pj,m}j , {Ps,j}j)

= σ2
m

<
 K∑
j=1

fHk,mH
((i∗(m))
j,k pj,m

2

+

K∑
j=1

(
<
[
fHk,mH

(i∗(m))
j,k pj,m

])2
(
σ2
s,j +

σ2
r

Ps,j

)
+
N0

2
‖fk,m‖2.

(37)

where the unique index i∗(m) is the one that satisfies
a

(i∗(m))
m = 1. For notation simplicity, we replace i∗(m) with
i∗m in the following. Substituting (36) and (37) into P2, this

problem is reformulated as follows, P6:

max
{fk,m},{pj,m}
{Ps,k}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

Ai∗`,`′,k,m(fk,m, {pj,m})
Bi∗k,m(fk,m, {pj,m}, {Ps,j})

(38a)
s.t. (18b), (18f)

Note that (18f) can be relaxed to

‖fk,m‖2 ≤ 1, ∀k, ∀m, (39)

since the objective (38a) multiplied by a positive factor does
not impact the optimization. Note that the two functions
Ai∗`,`′,k,m(fk,m, {pj,m}) and Bi∗k,m (fk,m, {pj,m}, {Ps,j}) are
both convex and differentiable with respect to (w.r.t.) fk,m and
({Ps,j}, {pj,m}), respectively. The constraint (18b) is convex
and differentiable w.r.t. ({Ps,j}, {pj,m}).

However, the objective (38a) is the summation of the
nonlinear multiple-ratio problem, which is hard to deal with.
We propose an alternating maximization technique to solve
this problem P6 in the following.

D. Joint Sensing Power Allocation, Multicast Beamforming
and Receive Beamforming Design

In this subsection, we propose a alternating method to
convert (38) to two sub-problems, which alternately update
the ({pj,m}, {Ps,j}) and {fk,m}. Specifically, the subproblems
that optimizing {fk,m} and {pj,m} both can be sub-optimally
addressed by a multiple-ratio fractional programming ap-
proach with quadratic transform.

1) Joint Sensing Power Allocation and Multicast Beam-
forming Design: In this case, given the subcarrier allocation
indicators {a(i)

m } and receive beamforming fk,m, the quadratic
transform technique [41, Theorem 2] is utilized to decouple the
numerator and the denominator of each ratio term and con-
vert a convex-convex multiple-ratio fractional programming
problems into a sequence of convex optimization problems.
The primal variables multicast beamforming {pj,m} and the
auxiliary variables, denoted as {y`,`′,k,m}, are alternately
optimized till convergence, which consists of two steps.

Step 1: when {pj,m} is held fixed, the optimal y`,`′,k,m can
be found in closed form as

y?`,`′,k,m = (Bi
∗

k,m(pj,m, Ps,j ))
−1ϕ

i∗m
`,`′,k,m(pj,m) ∈ R, (40)

with ϕi
∗
m

`,`′,k,m(pj,m) : CNt → R is denoted as

ϕ
i∗m
`,`′,k,m(pj,m) , (µ`,k,m−µ`′,k,m)<

 K∑
j=1

fHk,mH
(i∗m)
j,k pj,m

 .
(41)

Step 2: when y`,`′,k,m is fixed, solving an equivalent concave
maximization sub-problem that is derived from P6.

We demonstrate that the quadratic transform method can
be applied to tackle multicast beamforming design as follows.
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Algorithm 2 Quadratic Transform Approach for Convex-
Convex FP Problem P6

Input: Channel gain {H(i∗m)
j,k }, Device energy {Ek}, Auxil-

iary variables {y`,`′,k,m}, {z`,`′,k,m}.
Output: {pj,m}, {fk,m}, {Ps,j}

1: Initialize auxiliary variables {y`,`′,k,m} and {z`,`′,k,m};
2: repeat
3: Update {pj,m} by P8 (44) under given {y`,`′,k,m};
4: Update the auxiliary functions Ai∗`,`′,k,m(pj,m) and

Bi∗`,`′,k,m(pj,m);
5: Update the auxiliary variables as (40);
6: until convergence
7: repeat
8: Update {fk,m} by P9 (45) under given {z`,`′,k,m};
9: Update the auxiliary functions Ai∗`,`′,k,m(fk,m) and

Bi∗`,`′,k,m(fk,m);
10: Update the auxiliary variables by (46);
11: until convergence
12: fk,m ← fk,m

‖fk,m‖ ,∀k, ∀m.

As for multicast beamforming {pj,m}j under given fk,m
and i∗m, the P6 can be simplified to

P7 max
{pj,m},{Ps,j}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

Ai∗`,`′,k,m(pj,m)

Bi∗k,m(pj,m, Ps,j )
(42a)

s.t. (18b).

Lemma 4 (Quadratic Transform). The objective (42a) of P7
can be equivalently converted into a concave maximization
problem by the quadratic transform method.

Proof. Recognize that each term in the summation of (42a)
can be reformulated as

(ϕ
i∗m
`,`′,k,m(pj,m))T (Bk,m(pj,m, Ps,j ))

−1ϕ
i∗m
`,`′,k,m(pj,m)

(43)
where ϕ

i∗m
`,`′,k,m(pj,m) in (41) is a linear combination of

pj,m, and Bk,m(pj,m, Ps,j ) ∈ R+ is convex with respect
to (pj,m, Ps,j ). Replacing each term of (42a) with (43),
thus P7 satisfies the conditions of quadratic transform [41,
Eq.(16)].

Based on Lemma 4, the corresponding quadratic transform
for P7 (42) is equivalent to [41, Theorem 2] :

P8 max
{pj,m},{Ps,j}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

(2y`,`′,k,mϕ
i∗m
`,`′,k,m(pj,m)

− y2
`,`′,k,mBi

∗

k,m(pj,m, Ps,j )), (44a)

s.t. (18b),

where {y`,`′,k,m} in (40) are introduced auxiliary variables.
Due to the convexity of each Bk,m(pj,m, Ps,j ), and the linear-
ity of ϕi

∗
m

`,`′,k,m(pj,m), the quadratic transform (44a) is concave
in {pj,m} and Ps,j for fixed {y`,`′,k,m}. Therefore, P8 is
concave, and the optimal {pj,m} and {Ps,j} can be efficiently
obtained through numerical convex optimization.

Algorithm 3 Proposed Alternating Optimization

Input: Channel gain {H(i∗m)
j,k }, Device energy {Ek}, Weights

w̃
(i)
m .

Output: {pj,m}, {fk,m}, {Ps,j}, {a(i)
m }

1: Initialize auxiliary variables {y`,`′,k,m} and {z`,`′,k,m},
{pj,m}, {fk,m}, {Ps,j};

2: repeat
3: Update {a(i)

m } via Algorithm 1;
4: Update {pj,m}, {fk,m}, {Ps,j} via Algorithm 2;
5: until convergence

2) Receive Beamforming Design: Finally, similar to mul-
ticast beamforming design, with the updated sensing power
Ps,j and multicast beamforming vector pj,m, the receive
beamforming vector fk,m is updated with subproblem

P9 max
{fk,m}

K∑
k=1

M∑
m=1

Lk∑
`′=1

∑
`<`′

(2z`,`′,k,mϕ
i∗m
`,`′,k,m(fk,m)

− z2
`,`′,k,mBi

∗

k,m(fk,m)), (45a)

s.t. (39).

with a auxiliary variable z`,`′,k,m, which is iteratively updated

z?`,`′,k,m = (Bi
∗

k,m(fk,m))−1ϕ
i∗m
`,`′,k,m(fk,m) ∈ R, (46)

and ϕi
∗
m

`,`′,k,m(fk,m) : CNr → R is denoted as

ϕ
i∗m
`,`′,k,m(fk,m) , (µ`,k,m−µ`′,k,m)<

 K∑
j=1

fHk,mH
(i∗m)
j,k fk,m

 .
(47)

Hence the P9 (45) is concave maximization problem over
{fk,m}, which can also be solved by CVXPY. We show the
solution procedure in Algorithm 2.

This algorithm jointly optimizes the sensing power, multi-
cast beamforming, and receive beamforming vectors using an
iterative, alternating method. It breaks the problem into two
sub-problems that are solved repeatedly until convergence. The
most computationally intensive part of the Algorithm 2 is solv-
ing the convex optimization problems (P8 and P9), whose
computational costs are on the order of O((KM(Nt+Nr))

3)
within each iteration. This could be feasible for a small number
of devices and feature dimensions. If the number of devices
is too large, these devices can be assisted by a logical control
node to manage the optimization problem.

3) Solution to P2: Based on the alternating method de-
scribed above, the detailed procedure of solving P2 (22)
contains 2 steps: for the fixed ({Ps,k}, {pj,m}), {fk,m}, up-
date {a(i)

m } via Algorithm 1; for the fixed {a(i)
m }, update

({Ps,k}, {pj,m}), {fk,m} by Algorithm 2. The two steps are
alternately iterated till convergence.

E. Complexity Analysis

Consider the quadratic transform method for solving joint
sensing power allocation, multicast beamforming and receive
beamforming design for P6, which requires computational
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complexity of O(I0(KM(Nt + Nr))
3) with I0 being the

number of iterations for convergence in Algorithm 2. Provided
that the complexity of Algorithm is O(M3), denoting I1 as the
number of iterations in Algorithm 3, the total computational
complexity of proposed alternating optimization algorithm is
O(I1(I0(KM(Nt +Nr))

3 +M3)).

V. NUMERICAL RESULTS

A. Simulation Settings

1) Network settings: In this section, we evaluate and com-
pare the performance of our proposed decentralized ISCC
method for inference tasks under different schemes. For
all the following simulations, unless specified otherwise, a
decentralized network consisting of three ISAC devices is
considered for inference tasks, where each device is equipped
with 8 transmit antennas and 8 receive antennas. The channel
gains between the device j and k is modeled as Hj,k =
|φj,kρj,k|2,∀j 6= k, where [φj,k]dB = − [PLj,k]dB + [ζj,k]dB
represents the large scale fading propagation coefficient in dB
with [PLj,k]dB = 128.1 + 37.6 log10[dj,k]km being the path
loss in dB, dj,k being the distance between device j and
device k, which is randomly set to in the range of [d km,
d+0.05 km] and by default d = 0.4. And [ζj,k]dB ∼ N (0, σ2

ζ )
stands for shadowing in dB. On the other hand, each element
in ρj,k is assumed to satisfy a Rayleigh small-scale channel
coefficient CN (0, 1). Based on [42], a small Rician factor
is used to characterize the residual self-interference channel,
i.e., H(i)

k,k ∼ CN (
√

σ2
SIκ

1+κINr×Nt ,
σ2

SI
1+κINr⊗INt),∀k, i with σ2

SI
used to parameterize the residual self-interference that is fixed
at −60dB and κ stands for the Rician factor that is set to 3dB.
The variance of both the sensing noise σ2

r and clutter signal
σ2
s,k are set to 0.2. The channel noise variance N0 = 1 and the

variance of shadow fading σ2
ζ = 8dB. The number of extracted

feature elements M = 4. Both the sensing time Ts and the
communication time are 1. The device energy threshold Ek
is set to 25mdB, and the computation energy for each device
Ep,k = 10−4 Joule.

B. Inference tasks and models

In this experiment, the University of Glasgow Radar Sig-
nature dataset [33] is adopted to evaluate the performance of
the proposed algorithm. This dataset contains the radar echo
signals of different motions of 103 people in all age groups sat
in nine different locations. Data corresponding to five motions
are selected for the recognition task: walking, sitting down,
standing up, picking up an object, and drinking water. Based
on the dataset, each device is assigned a different task along
with a machine learning model:
• The task of device 1 is identifying the target’s motion

from 5 motions with a multi-layer perceptron (MLP)
neural network where the numbers of neurons in the
hidden layers of the MLP are set to 80 and 40 with Adam
optimizer and ReLU activation.

• The task of device 2 is to distinguish the gender of the
target with a K-Nearest Neighbour (KNN) model where
the value of K = 2.

Fig. 3. Discriminant gain versus Inference accuracy.

• The task of device 3 is to separate the age group of the
target (e.g.,[0, 30] or [30, 50] or [50, ]) with a K-Nearest
Neighbour model where the value of K = 3.

The dataset [33] comprises 1,500 samples in total, partitioned
into 90% training samples and 10% test samples. In the
following scenarios, the training dataset is considered the
ground-truth data (free of noise) when training all ML models
on a powerful server. Then the pre-trained model is transmitted
to each device and used for inference therein, while the testing
dataset is distorted by sensing and communication noise.

C. Inference Algorithms

To evaluate our proposed method, some benchmarking
schemes are described below:
• Proposed Approach: All parameters are optimized by the

proposed alternating maximization approach.
• Proposed, Subcarrier-Aware: the subcarrier allocation is

randomly set, the sensing power, multicast, and receive
beamforming is optimized via Algorithm 2.

• SCA-based: The successive convex approximation (SCA)
based alternating algorithm proposed in [43] is used for
solving P1 (18).

• Baseline: The sensing power is allocated to a constant,
the subcarriers are allocated randomly among all devices,
and the multicast as well as receive beamforming vectors
are set to be randomly generated during the transmission.

D. Performance Comparison

Fig. 3 illustrates the relationship between inference accuracy
and discriminant gain for MLP (task 1) and KNN (tasks 2
and 3) models across the three tasks of our proposed method.
The results demonstrate that accuracy consistently increases
with higher discriminant gain, confirming the effectiveness
of this metric for the classification task. Furthermore, it is
revealed that task 2 achieves superior performance across all
discriminant gain values, suggesting it is inherently simpler
than tasks 1 and 3.

Fig. 4 demonstrates that the inference performance of all
three devices generally degrades as the distance between
devices d increases. It is because a larger distance between
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(a) Task 1. (b) Task 2. (c) Task 3.

Fig. 4. Inference accuracy of three tasks on corresponding devices versus distance between devices varying sensing noise.

Device energy 10 log10Ek(mJ)

(a) Task 1.

Device energy 10 log10Ek(mJ)

(b) Task 2.

Device energy 10 log10Ek(mJ)

(c) Task 3.

Fig. 5. Inference accuracy of three tasks on corresponding devices versus different device energy.

(a) Task 1. (b) Task 2. (c) Task 3.

Fig. 6. Inference accuracy of three tasks on corresponding devices versus different feature dimensions.

the devices leads to stronger path losses and weaker channel
gains, thereby inducing larger communication distortion and
worse accuracy. However, non-monotonic behavior of the
proposed approach is observed at specific distance counts (e.g.,
d = 0.75km, σ2

r = 0.2), where the accuracy of task 2 improves
while tasks 1 and 2 decline. This trade-off arises from the
decentralized nature of the system, where devices indepen-
dently optimize their resource allocation to balance competing
multi-objectives. Additionally, we present the various sensing
distortions σ2

r ’s impact on inference performance. It shows that
all three tasks can achieve better performance when suffering
less sensing distortion.

Fig. 5 compares the performance of our proposed method

with SCA-based and baseline approaches in terms of inference
accuracy across three tasks under varying total device energy.
The results show that a higher total energy threshold improves
inference performance, as devices can allocate more sens-
ing and communication power to mitigate clutter distortion,
channel fading, and noise. Notably, our proposed method
consistently achieves the highest inference accuracy across all
energy levels, outperforming both the SCA-based and baseline
approaches. The superiority of our method arises from the
limitations of conventional SCA, which relies on iterative
convex approximations of non-convex subproblems, leading
to cumulative errors and suboptimal solutions. In contrast, our
proposed method leverages the scalability of the quadratic
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transform, ensuring more robust performance. Additionally,
the baseline scheme underperforms because it does not adapt
sensing power or beamforming vectors to different feature
elements. The proposed subcarrier-aware approach performs
worse than the proposed approach that optimizes all variables,
which is due to the incomplete consideration of subcarrier
allocation.

Fig. 6 compares the inference accuracy of three methods
across varying feature dimensions. The results demonstrate
a nonlinear relationship between feature dimensionality and
inference performance. All methods exhibit improved accuracy
with increasing dimensions, as additional dimensions provide
richer feature representations of the target variable. Neverthe-
less, we observe that a feature dimension of M = 5 is suffi-
cient to achieve high inference accuracy, whereas larger values
of M only increase the computational and communication
complexity without yielding significant accuracy gains. No-
tably, both the proposed method and the SCA-based approach
show greater robustness compared to the baseline across all
dimensional configurations. However, the proposed scheme
consistently achieves superior accuracy, demonstrating its ef-
fectiveness in balancing the fundamental trade-off between the
three tasks.

VI. CONCLUSION

This paper proposes a decentralized AirComp based ISCC
system tailored for multi-task collaborative inference. Our
proposed scheme facilitates simultaneous multicast and Air-
Comp aggregation of local features of all devices through
full-duplex communication, which makes the communication
overhead irrelevant to the number of devices. To further
enhance the inference performance, we leverage subcarrier
allocation. We exploited the self-interference (SI) channel in
full-duplex communication to aggregate features from one
device with others, reducing the cost of computation resources.
Leveraging these benefits, our proposed scheme shows a better
inference performance in experiments. This new scheme paves
the way for broader applications with massive ISCC devices
for distributed learning.

Our work opens several research directions, including ex-
ploiting new hardware facilities like 3-D bandstop frequency
selective structures [44], differential antennas [45], and time
modulated antennas [46] in the ISCC design, extending the
design into systems with continuous inference tasks, trans-
forming the system into digital AirComp based framework
[47].

APPENDIX A
PROOF OF LEMMA 1

The subcarrier allocation constraints (18c)∼(18e) implies
that for each fixed pair (k,m), only one of the a(i)

k,m ∈ {0, 1}
is nonzero, i.e.,

a
(i)
k,m · a

(i′)
k,m = 0, ∀i 6= i′. (48)

Let si,k,m ,
∑K
j=1 f

H
k,mH

(i)
j,kpj,m ∈ C, (µ̃`,k,m − µ̃`′,k,m)

2 is

(µ`,m − µ`′,m)2

(
<

[
M∑
i=1

a
(i)
k,m · si,k,m

])2

=(µ`,m − µ`′,m)2

(
M∑
i=1

M∑
i′=1

a
(i)
k,ma

(i′)
k,m · < [si,k,m]< [si′,k,m]

)

=(µ`,m − µ`′,m)2
M∑
i=1

(
a

(i)
k,m

)2

· (< [si,k,m])
2

=(µ`,m − µ`′,m)2
M∑
i=1

a
(i)
k,m · (< [si,k,m])

2
,

(49)
where the second to last equation uses (48) and the last

equation uses
(
a

(i)
k,m

)2

= a
(i)
k,m since a(i)

k,m ∈ {0, 1}. Similarly,

denoting s̃
(i)
j,k,m , fHk,mH

(i)
j,kpj,m ∈ C and ũj , σ2

s,j +
σ2
r

Ps,j
,

we rewrite the second term in (13) as

K∑
j=1

(
<

[
M∑
i=1

a
(i)
k,ms̃

(i)
j,k,m

])2

ũj

=

K∑
j=1

M∑
i=1

a
(i)
k,m

(
<[s̃

(i)
j,k,m]

)2

ũj

=

M∑
i=1

a
(i)
k,m ·

K∑
j=1

(
<
[
fHk,mH

(i)
j pj,m

])2
(
σ2
s,j +

σ2
r

ps,j

)
(50)

Based on (49), the first term in (13) can be rewritten as

σ2
m

M∑
i=1

aik,m ·

<
 K∑
j=1

fHk,mH
(i)
j,kPj,m

2

(51)

According to (49), (50) and (51), we can derive (20) and (21).

APPENDIX B
PROOF OF LEMMA 2

The objective function of P4 (26) is

max
{aim}

K∑
k=1

M∑
m=1

∑M
i=1 a

(i)
m d̄

(i)
k,m∑M

i=1 a
(i)
m c̄

(i)
k,m + N0

2 ‖fk,m‖2
(52)

The constraint
∑M
i=1 a

i
m = 1, ∀m, implies that for any given

m, a unique item, denoted as i∗m, is assigned to it (i.e., a(i∗m)
m =

1). Consequently, the terms in the objective function can be
simplified as follows:

M∑
i=1

a(i)
m d̄

(i)
k,m = d̄

(i∗m)
k,m ,

M∑
i=1

a(i)
m c̄

(i)
k,m = c̄

(i∗m)
k,m . (53)

Substituting these into the objective function (52) yields

max
A

K∑
k=1

M∑
m=1

d̄
(i∗m)
k,m

c̄
(i∗m)
k,m + N0

2 ‖fk,m‖2
. (54)

where i∗m is the item assigned to m-th element under the as-
signment matrix A. The set {i∗1, . . . , i∗M} forms a permutation
of {1, . . . ,M}.
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By interchanging the order of summation, we can rewrite
(54) as

max
A

M∑
i=1

(
K∑
k=1

d̄
(i∗m)
k,m

c̄
(i∗m)
k,m + N0

2 ‖fk,m‖2

)
. (55)

This reformulation reveals that the problem seeks a single
permutation (i∗1, . . . , i

∗
M ) that maximizes the element-specific

aggregate discriminant gain.
The structure of the objective function is characteristic of

the standard assignment problem. The weight associated with
assigning i-th subcarrier to m-th element can be defined as
the sum of individual device-based ratio terms for that specific
assignment:

w(i)
m ,

K∑
k=1

d̄
(i)
k,m

c̄
(i)
k,m + N0

2 ‖fk,m‖2
(56)

where the objective can also be expressed as
∑M
m=1 w

(i∗m)
m .

APPENDIX C
PROOF OF LEMMA 3

Let (m, i) be an edge in the complete bipartite graph G. For
the following cases: 1) m ∈ Ū , i ∈ V̄ , the sum um + vi does
not change, this proves that rigid edges from Ū to V̄ remain
rigid; 2) m ∈ Ū , i /∈ V̄ , the sum um + vi decreases by δ.
By the definition of δ, the edge (m, i) which δ refers to will
become rigid; 3) m /∈ Ū , i /∈ V̄ , the sum remains unchanged;
4) m /∈ Ū , i ∈ V̄ , the resulting sum increases by δ, hence the
um + vi < w̃

(i)
m is still preserved.
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