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Abstract—The extremely high business volume of the financial
industry brings unaffordable operating pressure to the back-end
data system of financial companies. Recently, data-driven deep
learning algorithms have achieved breakthroughs in analyzing
and predicting system anomalies. However, in the case of high-
dimensional data, deep learning faces the problems of long
training time, lack of explainability and transferability. In this
paper, we propose a model based on fuzzy integral for observing
and modeling the state of the system. Firstly, the fuzzy integral
algorithm has lower complexity, which is more suitable for
the time-sensitive financial industry. Then, based on the fuzzy
integral, the vector composed of the fuzzy measures of all the
features is used to represent the state of the system. It is
proved that the system constructed by this modeling method has
the Markov property. Moreover, compared with deep learning,
fuzzy integral-based methods are not only more computationally
efficient but also explainable and transferable. Experimentally,
we use the actual data of securities companies and have better
results in the systematic anomaly analysis.

Index Terms—Choquet fuzzy integral, anomaly detection,
Markov-chains-based state space.

I. INTRODUCTION

As a vertical industry where information technology (IT)
is primarily used, IT has critical application scenarios in im-
proving service quality, reducing operating costs, and ensuring
business security. Cloud computing provides a platform for the
application of big data and machine learning in the financial
industry [1]. The application of cloud computing in IT systems
improves the efficiency of system operation and management,
but it also brings some risks. Reference [2] proposes three
possible risks of cloud computing architectures: stability risk,
availability risk and preservation risk. Simultaneously, large IT
platforms have experienced downtime. Because cloud com-
puting services have a sizable market, outages could result
in significant economic losses. Particularly in a time-sensitive
industry such as finance, an anomaly interruption of the IT
system may lead to unquantifiable economic losses.

The IT platform is a highly dynamic and extremely complex
network system. From the external factors of the IT platform,
user business distribution is complex, and user activities are

unpredictable. From the perspective of internal factors, IT
systems have nonlinear characteristics. The network topology,
software and hardware of the system will be upgraded, which
makes the system time-varying. The dynamic deployment
of resources such as microservice modules, middleware, and
network switching equipment makes the system dynamic and
complex. These factors bring challenges to the operation and
maintenance of IT systems.

Much of the studies on system anomaly detection are based
on deep learning methods. Reference [3] proposes an unsuper-
vised and sequential autoencoder ensembles based anomaly
detection framework, which trains KPI sequences through
RSC-RNN, which maximizes the preservation of sequence
information. Reference [4] proposes an LSTM-based VAE un-
supervised anomaly detection algorithm with anomaly scoring
by local outlier factor. Reference [5] extracts the features of the
KPI sequence based on CNN, and judges the abnormality by
analyzing the difference between the predicted value and the
actual value. Besides deep learning method, references [6]–[8]
use the data of the microservice system to reflect the system
architecture, and combine the method of big data statistics
to obtain the system graph structure to analyze the system
anomaly situation through the obtained graph structure. Ref-
erence [9] compares several distance-based anomaly detection
algorithms. The problem with distance-based algorithms is
that the anomaly threshold is fixed. However, the operating
state of the system is not fixed, and the threshold needs
to change with the system state. Reference [10] proposes
KELOS to estimate data density, which improves the problem
of immutable thresholds in local anomaly detection based
on distance. The main feature of the black-box approach is
that the model needs to learn historical anomaly data. The
limitations of this approach are as follows:

• Insufficient explainability. Explainability is defined as
whether a parameter in a model can be explained in phys-
ical sense. The black-box method is based on phenomena
and does not analyze the interaction relationship between

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Real-Time Data Processing and Optimization in Industrial and IoT 
Applications

978-1-6654-5975-4/22/$31.00 ©2022 IEEE 916

20
22

 IE
EE

 G
lo

be
co

m
 W

or
ks

ho
ps

 (G
C

 W
ks

hp
s)

 | 
97

8-
1-

66
54

-5
97

5-
4/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

G
C

W
ks

hp
s5

66
02

.2
02

2.
10

00
86

84

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 20,2023 at 16:10:50 UTC from IEEE Xplore.  Restrictions apply. 



features.
• Insufficient transferability. Transferability is a capability

that is reusable. Since the basic features are stable, once
constructed, there is no need to retrain. Nevertheless,
when the microservice architecture varies, data collection
and training need to be re-implemented.

• Insufficient systematicness. Our model can analyze the
state of the system macroscopically across function nodes
and networks. The analysis granularity of black-box
model is single, which means that the model can only
analyze the problem from one perspective.

The lack of explainability reduces the trust and verifiability
of decisions in deep learning-based systems [11], [12]. To
address this problem, [13], [14] propose explainability of
deep learning models. For the transferability problem of deep
learning, reference [15] surveyed some studies on transfer
learning. Transfer learning can solve the problem of insuf-
ficient transferability to a certain extent. This paper is based
on back-end data from securities company A. The sensitivity
of data in the financial industry and the time-varying nature
of high-dimensional data systems require models to have
explainability, transferability and systematicness at the same
time. In order to solve the above problems, our contributions
include:

• We build a Markov state transition model based on fuzzy
measure vectors for each host. Models based on fuzzy
measures are explainable, transferable and systematic.

• The anomaly detection based on the above model is
achieved. At the same time, the running time of the
algorithm is tens of milliseconds in case of 10-20 input
features, which is much lower than the 10 seconds
required by the industry.

Section II will introduce the fuzzy integral theory and
anomaly localization and analysis algorithm based on the
fuzzy measure. Section III will verify the fuzzy measures to
describe the rationality of the system and the experimental
results of the anomaly detection and localization algorithm.
Section IV is the conclusion of this paper.

II. SYSTEM MODEL

A. Choquet Fuzzy Integral

Sugeno developed the concept of fuzzy measure to solve
the multi-attribute decision-making problem, where there is
correlation between attributes but no additivity. The Fuzzy
measure can effectively characterize the relationship between
many attributes and evaluate the overall significance of one
or more attributes [16]. As a result, the importance model
built on fuzzy measure attributes has the potential to capture
the significance of each feature. There are two main types of
fuzzy integral theories based on fuzzy measures, namely the
Sugeno fuzzy integral proposed by Sugeno and the Choquet
fuzzy integral. Among them, Choquet fuzzy integral is widely
used. In some studies, it is combined with AI to enhance the
accuracy and explainability of AI models [17], [18].

Since the KPI of an IT system is a concept affected by
multi-dimensional factors, the contribution of each factor to
the KPI of the observed object can be reflected through
fuzzy measures. We can observe m features of a host. The
set X = {x1, x2, ..., xm} represents the feature set. At the
same time, we can get the KPI value yi in the corresponding
observation period of the host. With n observations, for the
above observation process, we can abstract a function f . The
i-th observation for the j-th feature is fij , where 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Then, we can get Table 1.

TABLE I
FEATURE OBSERVATIONS AND SYSTEM KPIS

x1 x2 ... xm yi

f11 f12 ... f1m y1
f21 f22 ... f2m y2
... ... ... ... ...
fn1 fn2 ... fnm yn

In the i-th observation, the contribution of the combination
of different features can be modeled as parameter combination
fuzzy measure (PCFM), and the combination of different
features is an element e in the power set of X. The above
calculation process can be abstracted as a mapping µ, satis-
fying µ(e) −→ R and µ(ϕ) = 0.

Equation (1) is the computational expression of the choquet
fuzzy integral,

y =

∫
(C)

fdµ =

∫ ∞

0−
(FT ) dT, (1)

where FT = {x | f(x) ≤ T, T ∈ R}. Reference [19]
discusses the use of the non-additivity method to solve fuzzy
integral. This method has high complexity and is not suitable
for the real-time financial field. Therefore, in order to reduce
the complexity of solving equation (1), the fij are rearranged
according to their value to satisfy (2),

f(x(0)) ≤ f(x(1)) ≤ f(x(2)) ≤ ... ≤ f(x(m)), (2)

where f(x(0)) = 0 and x(1), x(2), x(3), ..., x(m) is rearranging
result of x1, x2, x3, ..., xm according (2). Based on the rear-
rangement of (2), equation (1) can be transformed into the
sum form of equation (3),∫

(C)

fdµ =

m∑
i=1

(
f
(
x(i)

)
− f

(
x(i−1)

))
µ (Θi) , (3)

where Θi = {x(i), x(i+1), ..., x(m)}.
Reference [19] proposes an algorithm for computing

PCFM, and we improve on it. In order to get the
contribution of each feature to the system KPI, algo-
rithm 1 shows a PCFM-based method to compute pa-
rameter additive fuzzy measure (PAFM). In algorithm 1,
ζT
i =

{
fi
(
x(1)

)
− fi

(
x(0)

)
, . . . , fi

(
x(m)

)
− fi

(
x(m−1)

)}
,

bit(k, i) represents the value of the i-th bit in the binary number
corresponding to the decimal number k.
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Algorithm 1: Calculate the PAFM algorithm

Input: Pre-processed ζT
i , host KPI sequence y

, hyper-parameter ϵ
Output: PAFM vector µPAFM
Initialization:
µPAFM = [0, ..., 0],
L is a vector where Li represents the original index of
each parameter.

for i = 1, ..., n do
fi,sort = {fi(x(0)), fi(x(1)), ..., fi(x(m))},
Li,sort represents the index after sorting,
µPCFM = PCFM(ζi, yi, ϵ, Li,sort).

for i = 1, ...,m do
µPAFM[i] =

∑2m−1
k=1 µPCFM[k]× bit(k, i)

return µPAFM

def PCFM(ζi, yi, ϵ, Li,sort)
µT

ζ = ζi
(
ζT
i ζi

)−1
yi

for j = 1, ...,m do
compare L and Li,sort and find ζi,j
corresponding parameter combination,
update it with µ = ϵµ+ (1− µ)µζ .

return µ

B. Anomaly Detection and Localization Algorithm

Algorithms based on state transition have achieved good re-
sults in the field of industrial control systems [20]. However in
previous studies, the definitions of system states and transition
relationships were specified manually, so the construction of
the state transition graph model requires much manual work.
As the system architecture evolves, prior knowledge about
the system becomes outdated. For complex IT systems, the
number of possible states of the system is enormous, so these
states need to be defined automatically.

In this paper, the discretized mapping of the PAFM vector
calculated in a specific time period is used as the method
of dividing the state. The reason for discretization is that
the elements in the PAFM vector calculated by algorithm 1
are continuous values, so discretization processing is required
to perform state division. After the PAFM is normalized
according to xnorm = (x−xmin)/(xmax−xmin), the values
of 0−1 are evenly mapped to the set {0, 1, 2, ..., L}. The larger
the value, the greater the contribution to the KPI. From the
above fuzzy integral theory, PAFM is the contribution of each
feature to KPI. Therefore, the discretized PAFM vector directly
reflects the contribution level of the features of the system to
the KPI in the current state. The effectiveness of this method
will be illustrated in the first part of Section III. When a piece
of data appears and directly affects the discretized PAFM, it
means that the state of the system has shifted.

For anomaly detection, we add average KPIs to states
determined by discretely PAFM vectors. The reason for this
is that when the PAFM vectors are similar, it indicates that

the contributions of each feature to the KPI are in a similar
state. The average KPI at this time is also similar. As a
new record is entered, we can update the average KPI with
Avgn+1 = (n × Avgn + Kn+1)/(n + 1), where Avgn rep-
resents the average KPI value at the previous moment, Kn+1

represents the KPI value of the input data and n represents
the number of times this state occurs.

The basis for our judgment of anomaly is that when the
KPI in the latest record exceeds the average KPI ∆ times
of the corresponding state, it is judged that the new input
data is anomalous. Furthermore, comparing the PAFM vector
calculated in this time period with the PAFM vector of the
previous time period, the feature with the largest increase in
the fuzzy measure of the two vectors contributes the most
to the anomaly, so it is used as the result of root cause
localization.

Algorithm 2: Anomaly detection algorithm
Input:System observations D[N ] in N time periods,
State space vector s,
Output: anomaly boolean sequence a
Initialization:
State calling times vector sn = [0, .., 0],
State KPI vector sK = [0, ..., 0],
anomaly boolean vector a = [0, . . . , 0],
for i = 1, ..., len(D) do

According to algorithm 1, compute µPAFM
corresponding to D[i],

map µPAFM to discrete µd,PAFM,
j = s.index(µd,PAFM)
update sk[j],
update sn[j],
Get the KPI value k of the latest record,
if k > ∆× sK[j] then

a[i] = 1
Comparing the µPAFM based on D[i− 1], the

feature corresponding to the element with the
largest contribution increment is the root
cause of this anomaly

return a

III. DATA PROCESSING AND THEORY VERIFICATION

A. Microservice Architecture of Experimental IT System

The data used in this paper comes from the data center of
securities company A. The experimental IT system consists of
four function nodes, and each function node contains several
hosts. An example of its business flow is shown in figure 1.
From figure 1, we can see that the business flow generated by
the system will pass through function node A, so the analysis
result of function node A can reflect the condition of the entire
system. The data we obtained includes software calling and
hardware monitoring of function nodes B, C, and D, so these
three modules can be analyzed from two perspectives.
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Fig. 1. IT system architecture

B. Feature Engineering

The original data outputs by the IT system contain fields
including timestamp, function name and corresponding delay.
Combined with the algorithm described above, we define the
function name as the feature of the system and the delay as
the system KPI. For subsequent analysis needs, we need to
construct P from the original data, and record the average
KPI of each feature of the host within an observing interval.
First, we divide the entire observation period into several
observation intervals, the length of which is the parameter
d. Then, in original data, we perform the following statistics
process in the i-th observation interval. Pn[i, j] represents
the number of times the j−th feature is called, and Pt[i, j]
represents the sum of the delays of the j-th feature. We define
P [i, j] = Pt[i, j]/Pn[i, j]. Each row in P is called as a
record. We also define yi =

∑m
j=1 Pt[i, j]/

∑m
j=1 Pn[i, j] as

the average KPI of the system in i-th observation. Table 2
shows the structure of the P . The horizontal axis represents
the index of the observation interval, and the vertical axis
represents the index of the feature. KPIij represents the
average KPI of the j-th feature in the i-th observation interval.
The last column y of the table represents the system KPI.

TABLE II
STRUCTURE OF P

t1 t2 ... tN y

func1 KPI11 KPI12 . . . KPI1N y1
func2 KPI21 KPI22 . . . KPI2N y2

...
...

...
...

...
...

funcM KPIM1 KPIM2 . . . KPIMN yn

In order to observe the changes of the system over time,
we perform sliding window processing on the P data to
obtain a windowed data set. The sliding window length is
wl, and the sliding step size is sl. That is, every time window
slides, sl new records enter the end of the window, and sl old
records move out from the head of the window at the same
time. Finally, through algorithm 1, each group of window data
obtains a µPAFM vector, which becomes a state of the system
after discretization processing. After obtaining the process of
system state transition, we can analyze the system anomaly
through algorithm 2.

Fig. 2. Prediction error CDF Fig. 3. KPI CDF of two hosts

C. Verification of Fuzzy Integral Results

To verify whether the fuzzy integral-based method can
effectively characterize the system state, we design a set of
comparative experiments. We use the fuzzy integral method
and the RNN model to train and predict the KPI of the
system respectively, and compare and predict the relative error
calculated by

l =

{
yp[i]−yl[i]

yl[i]
, yl[i] ̸= 0

yp[i]
0.01 , yl[i] = 0

, (4)

where yp denotes the prediction value and yl denotes the label
value. We selected data within a period of time for training and
prediction and obtained the relative error cumulative distribu-
tion function (CDF) as shown in figure 2. From the results,
the prediction error obtained by the fuzzy integration method
is lower and more stable. By comparison, the algorithm based
on fuzzy integral is better than the algorithm based on RNN
in predicting KPI results. Therefore, the PAFM vector can
accurately model the state of the system.

D. Verification of explainability and transferability

In order to verify the effect of dividing the system state
based on PAFM, we verify it based on part of the actual
data, and take L = 4. That is, the continuous values of
PAFM are evenly mapped to the set {0, 1, 2, 3, 4}. The state
transition diagram we obtained is shown in figure 4, where
the information of each node contains a discrete PAFM vector
containing 7 features and the average KPI in this state. The
directed edge represents the state transition, and the transition
frequency under the experimental data is marked. We can see
that a state can be transferred to another state in the next
window or remain in this state, and some states appear more
frequently, which can represent the normal operating state of
the system.

1) explainability: Based on algorithm 2, we obtain the
above state transition model. Furthermore, we get the output
anomaly boolean sequence of algorithm 2, as shown in figure
5. In order to verify the explainability of our model, we
arbitrarily select an anomaly point from the results. Figure
5 shows µPAFM before and after the anomaly. Among them,
the horizontal axis Ftri represents the index of the feature, and
the vertical axis represents the value of PAFM. As can be seen
from figure 5, Ftr2 has the largest fuzzy measure increment
before and after this anomaly, that is, the KPI increases, and
Ftr2 contributes the most to it. Therefore, this feature will be
determined as the root cause of this anomaly. To sum up, the
parameters in our model have practical meaning.
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Fig. 4. State transition example

Fig. 5. PAFM corresponding to anomaly

2) transferability: We select two hosts in the same function
node, and use the data of the two hosts to transfer the model to
the two states through algorithm 2. Because the average KPI
value of each state is an important criterion for us to judge
anomalies. We calculate the CDF of the average KPI under
the same state of the two sets of data, as shown in figure 3,
and calculate the KL divergence of the two CDF lists through

DKL(CDF1||CDF2) =

n∑
i=1

p(x)log
p(x)

q(x)
. (5)

The final result is DKL = 0.03, which shows that when the
resource configuration and input business models are similar,
the same state in the state space can be reused.

E. System Memoryless Verification

In the actual IT system, the system is memoryless. That
is, the system has the Markov property. We use the chi-square
test method to verify the Markov property of the above system
description method. Assuming that the state set in the system
contains p states, the element cij in the transition matrix
represents the frequency of transition from state i to state

j. According to the state transition matrix C, the marginal
probability can be obtained by (6),

p·j =

∑m
i=1 cij∑m

i=1

∑n
j=1 cij

. (6)

Then, given the significance level α = 0.05, the statistic χ2 =
2
∑m

i=1

∑m
j=1 cij |log

cij
p·j

| satisfies the limit distribution with a
chi-square distribution with degrees of freedom (p − 1)2. If
χ2 > χ2

α((p− 1)2) is satisfied, the state transition process of
the system can be regarded as having Markov property. We
use the built-in function of matlab to find χ2

α((p− 1)2) as the
benchmark. We perform the above chi-square test based on
the data of function node A, and the verification results are
shown in figure 6. The horizontal axis represents the index
of the host, and the vertical axis represents the comparison
between the logarithmic calculated value and the benchmark
value. Through verification, the hosts of each function node
have Markov properties.

Fig. 6. PAFM corresponding to anomaly

IV. EXPERIMENTS AND RESULTS

A. Analysis results of a single host

In the experimental data set, there are 19 hosts in function
node A. The time period we observed was 8:30-11:30. In
the statistics of P , the length of the observation interval is
10s. That is, there are a total of 1080 observation intervals.
The total number of features is m = 16. The definition of
hyperparameters is as follows: wl = 30 × 10s. That is, each
window contains 30 pieces of record (n = 30 in algorithm 1),
and the window sliding step size sl = 1.

Substituting the above dataset and hyperparameter settings
into the algorithm, we are able to obtain features in function
node A that reflect anomalies. The output results of our
algorithm for selecting two hosts in function node A are shown
in figure 7. The figure shows a sequence of boolean values
where True value indicates that an anomaly was found in this
time window. The analysis results of other function nodes will
be reflected in the overall analysis of function nodes, and their
anomaly sequences will not be repeated in this part.

B. Joint analysis of function nodes

In order to reveal the effect of algorithm 2, this part
integrates the analysis results of function node A, function
node B, C, D software calling data and function node B, C, D
hardware monitoring data. We define ri as the ratio sequence
of hosts in a normal state and ri reflects the health state of
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Fig. 7. Experimental results of host of node A

the function node. In order to analyze the correlation between
the health status of each function node and the overall health
status of the system, we use equation (7) to calculate the cross-
correlation sequence between rA sequence of function node
A and roth sequences of other function nodes respectively.
Figure 8 shows the calculation results of the cross-correlation
sequence. It can be seen that the hardware monitoring score

Fig. 8. PAFM corresponding to anomaly

sequence and software calling score sequence of function
node B are strongly correlated with the overall score health
sequence of the system. Therefore, we can conclude that
the overall health of the system is greatly affected by the
function node B (software, hardware), and the anomaly of the
system can be prioritized for troubleshooting from the function
node B. Combined with the characteristics of the financial
securities business, UTC+8 9:00-10:00 is the opening time of
the Chinese stock market, and a large number of users will
send buying, selling or querying requests at this time. The
above analysis results reflect the impact on the system of the
function node B that undertakes user services during this time
period.

R[i] =

n−1∑
j=0

rA[j]roth[j + i] (7)

V. CONCLUSION

In this paper, we propose a Markov state-space model
for complex high-dimensional data systems based on fuzzy
integrals. Based on this model, we solved the problem of
anomaly detection and root cause location of the back-end data
system. On the basis of solving the problem, we first verify
the physical meaning of the fuzzy measure in the system, and
solve the problem of explainability. Then we verify that state
transitions under similar business models are reusable. Finally,
our experimental results show that the results with the host as

the analysis granularity reflects the correlation between the
upper-level modules. In actual operation scenarios, our analy-
sis results predict the performance bottlenecks of the system
during operation and improve the efficiency of troubleshooting
when anomalies occur.
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