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W Background - Edge Al Inference ) Smanater S

(Network Edge Intelligent Services (e.g., auto-driving and XR)
L Fast response to the requirements

QIntelligent decisions depends on the deployment of well-trained Al models (Edge Inference)

Base station

Base station
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On-device Inference [ SRR s
> Execute Al model on device V' almodel ((( )))
> High computation overhead (((- Sommoad A
Device

Base station

model
dOn-server Inference [? v vy Inf]
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» Communication bottleneck

((( ) transmlssmn

> Data. pl"ivacy Raw-data A

Device
Base station

QSplit Inference (Device-Edge Co-inference)

Al model
> Feature extraction on device [ g0 g hlf:iﬁ?fa
. . F eature extractlon :

+»» Low-dimensional feature vector

%+ Preserve data privacy Beatare ((( )))
. . @ transmission
» Computation offloading («

Device

Base station

What if the server is not always available for all devices simaltaneously? Decentralized co-inference!
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W System Model — Network Model

We consider a system containing K ISCC devices each equipped with a full-duplex
transceiver of N; transmit antennas and N, receive antennas.

(Each device has its own inference task requiring features from all other devices.
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< Latency T >
K devices transmit orthogonal FMCW = >*"<’ =L SOl
Device 2 Sensing Computation c o
t
signals to the sensing target with " (ircomp)
power' PS k Device K Sensing Computation
(t) | o2 27 fo it + 2 B o
Cs =rect | — | -cos | 2w m—
k T 0,k T,
JReceived signal at devjce
T (t = uk —|— Z Ve j —|— T, (t) Frequency 4 |
N =1 - N Frequency Modulated Continuous Wave i
Direct reflect Clutter Noise |

,f0+Bs

Line-of-Sight signal: u, () = H, (¢)se(t — 7)
QO H, k(t)is the round-trip coefficient,

O 7 is the round-trip delay. fo

A Clutter of path j : vk (t) = Crpj(t)sk (t — 7))

U Rich scattering, the overall clutter follows a

zero-mean Gaussian distribution.
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W Feature Model

< Latency T >
(Derive feature from received signal . — e
Device ensing omputation

Communication

» Sampling the received signal (AirComp)

» Data Filtering through SVD* (empirical) Device K Sensing Computation

> Feature Extraction

» Short-time Fourier transform
» Pre-trained PCA

I Normalized wide-view feature data

Wlth noise N, (m) Singular Value Decomposition Filter Principle Component Analysis

xk(m):x(m)+csjk(m)+@ 4
x ' )

— - -

Ground-truth Clutter + Noise

dThe ground-truth data is assumed to

be mixed Gaussian distribution

*G. Li, S.Wang, J. Li, R.Wang, X. Peng, and T. X. Han,“Wireless sensing with deep spectrogram network and primitive based
autoregressive hybrid channel model,” in IEEE Int.Workshop Signal Process. Adv.Wireless Commun. (SPAWC), Sep. 2021, pp. 48I—7485.
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W Communication Model

(I The feature received through over-the-air computation by device k € K

ye(m) =Y H;ipjmz;(m) + Hi xprmzi(m) + wi(m)
JEK j#k

dps is the multicast beamformer, when &' = k, Hy, . is the Self-Interference channel gain
By designing Pk, SI channel is exploited to aggregate x;, with other x;

I I i I S ition of
dThen a receive beamformer f; ., is applied at device & An:ggméosqual

Z \
mAk<frn’) fk: m IIj>kpj>mxj (m) k(m) W '“ \m
7 - I ; &

jeX |

\m ’
Then the aggregated features are used for inference task later. & — b~

Noise

Over-the-air Computation
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A Distribution of Extracted Feature Elements

> For the m-th element

L
1 o2
CEk(m) ~ Z e_le (,ue,m, Oi,m + aﬁ,k + Pg)}{)
JAggregated Feature Elements

oo, km = Hhe,m - Z £ H; 1Djm
jex
2
2 2 H H 2( 2 (77% H
Okm = Okm’ ka:,mHj;kpj,m +Z (fk,mHj,kPj,m) Og ;T P +N0fk,mfk:,m
jeK jex

5,J

dDesigning Metric
»MMSE ignores the heterogeneous distortion sensitivities of different elements

> Inference accuracy is hard to calculate instantaneously



W Task-oriented Metric

dDiscriminant gain is defined based on the KL
divergence between two Gaussian dist. classes
G (Zx(m)) = D [fo(Zk(m))|| for (21 (m))]
+Dxr [fo (Ze(m))|| fo(Ze(m))]
dNormally discriminant gain of every pair of
classes are summed up

=) > Gij(x)

i=1 j<i
(Shortage of avg. DG: unbalance

» Class 2 & 3 are too close and far away from class |

dSolution: Minimum Discriminant Gain

Gmin(Xx) = min ZG”'

L<SEAL<L -

(4 £ p gk

kh }5 ShanghaiTech University
Class 2
Class 1
A Cla
Centroid *
Average discriminant gain
(Maximize (G + Gyz + Ga3)/3)
*
Class 2
.
Class 1
A o .
A o o
@
A
A Ga3
Minimum pair-wise discriminant gain Class 3
(Maximize min{Gi, Gy3, Ga3}) *
*
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JObjective function: Maximize the weighted sum of minimum DG for all tasks

K / M . N 2
o . (foekem — fber oom)
maxiiniize nk min ~9
kz_ 1<(£0<L Z

m=1 Uk,m

(dDecision variable: Sensing power P
Multicast beamformer py ,,

Receive beamformer fi ..

M
dLong-term Power constraint: P xTs + Ep + Te Y _ |Prm > Xk (m) < Ex

m=1

Unit receive beamforming constraint: ||f;..||* = 1
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MW Joint design of Sensing Power and Beamforming

Hintroduce «; as a slack variable and extend the feasible region of constraints

E Qay, 1
(P (B} (Do o} Tk (1)
{ak} {Bez km}

M
s.t. Ps,szs,k + Ep,k: + Tc Z Hpkz,mH2 < Ek:7 ka,muz < 17 (2)
m=1
M
Qg — Z Be,er kem <0, (3)
m=1
( o )2 K 2
W’k’g R (Z f;mek/k,mpk',m> > Zo o kym ({ P i by AP ,m }s f,m) (4)
0,0 k,m b
LApproximate the last constraint with Taylor expansion
K
P4 Ozkvﬂe,,e',kn;i =1
st (2),03),
dThen alternatively Zer e ({Peg} ARsm b Bim) = Qg ((Psm} B B ) <0

» P5:Fix Pjm , Ps i, , update fr.m
» P6: Fix f; ,,, ,update pjm , Ps i



MW Joint design of Sensing Power and Beamforming
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Algorithm 1 Joint Sensing Power Allocation, Multicast and Receive Beamforming Design

Input: Channel gain {H, 1}, Device energy Ej

1: In1t1ahzet—0 {P[Oll} {p o b {f o o 1 [O], @’E);,,,C

2: Initialize function Qe v km ({ } f,LOJn, lgog/ * m)

3: repeat

4:  Derive the approximated problem P4;

5. repeat

6: Update fj ,,, by solving P5;

7: Update p; m, Ps 1 by solving P6;

8: until convergence

9:  Update function Qe M k m ({ [t+1]} f[t+1], Zzll]c m )
10: t+—t+41;

11: until convergence

]

—_
I\

., in feasible region of P3;

: Optimal solution P, < P[ B Chom & CL] £r <« £,




W Simulation

dMulti-task Radar Sensing of human activities™

(13 edge devices each equipped with 8 receive antennas and 8

transmit antennas, retrieving wide-view sensing data of same
target

dTasks

» Activity recognition and Person identification (Gender and Age)
> 4 activities: sit down, stand up, pick up an object, drink water
» 1500 samples of 54 volunteers

1P01A01R01.dat

140
135
130
125

Schemes

> Joint designing ISCC scheme (proposed)
» Fixed beamforming vectors and sensing powers 6

120

[ < TR W Y. )

Velocity [m/s]

115
110
105

*Radar signatures of human activities, available at http://researchdata.gla.ac.uk/848/, doi: 10.5525/gla.researchdata.848

14
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MW Simulation — Accuracy vs. Device Energy

LIt shows that a higher upper limit of energy leads to better inference
accuracy, because a higher device energy threshold indicates that the
devices can allocate more power to suppress the distortion and noise.

(Moreover, our proposal outperforms the baseline since the sensing
power and beamforming vectors are not adjusted to different feature
elements in the baseline scheme.

N /
80 A

70 A

60 -

50 /'-//"/‘
Our Proposal

—a&— Baseline

Task 1 Accuracy (%) (KNN Model)
Task 2 Accuracy (%) (MLP Model)
Task 3 Accuracy (%) (SVM Model)

Our Proposal
—»— Baseline

Qur Proposal
—a— Baseline

20 22 24 26 28 30 20 22 24 26 28 30 20 22 24 26 28 30
Device Energy(10log mjJ) Device Energy(10log mjJ) Device Energy(10log mJ)
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Task 1 Accuracy (%) (KNN Model)
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Simulation — Accuracy vs. Feature Dimension

JAccuracies of all three tasks increase as the feature dimension increases.
This is because different feature dimensions are orthogonal and
independent from the algorithm of PCA.

LIt follows that more feature dimensions can keep more data about the
sensing target, which improves the performance of inference tasks.

100 100 100

Iz

80

90 A 90 4

80 1 80 4

70 1

60
Our Proposal Our Proposal

—a— Baseline —»— Baseline

50 T T T T T T 50 T T T T T T 50 T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Feature Dimension Feature Dimension Feature Dimension

70 1 70 1

60 60

Task 2 Accuracy (%) (MLP Model)
Task 3 Accuracy (%) (SVM Model)

Our Proposal
—&— Baseline
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AQWe proposed a decentralized ISCC framework with the exploitation of
the self-interference channel in full-duplex communication.

OWe jointly designed the sensing power, multicast and receive
beamformer under the criterion of maximizing the weighted sum of
minimum discriminant gain in different tasks.

ASimulation results demonstrate that the proposed scheme can achieve
higher inference accuracy than the benchmarks under various limitations
of energy and feature dimensions.
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