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Abstract—Collaborative artificial intelligent (AI) inference has
been an effective approach to deploying well-trained AI models at
the network edge for empowering immersive intelligent services
such as autonomous driving and smart cities. In this paper,
we propose an integrated sensing-computation-communication
(ISCC) scheme for decentralized collaborative inference systems.
In the proposed scheme, multiple devices connect to each other
via device-to-device (D2D) links. Each device first extracts a
homogeneous feature vector from the raw sensory data obtained
from the same wide view of the source target and then aggregates
all local feature vectors using the over-the-air computation
technique. To further enhance the spectrum efficiency, the full-
duplex technology is utilized to allow all devices to transmit and
receive in the same frequency band. This, however, introduces
significant self-interference and coupling among different tasks.
To address these challenges, a multi-objective optimization-based
ISCC approach is proposed.

I. INTRODUCTION

The rapid development of communication technology and
computing capability has been leading emerging scenarios of
intelligent services such as autonomous robots or vehicles,
smart factory infrastructure, etc [1]–[5]. An emerging tech-
nique named collaborative artificial intelligent (AI) inference
prompts services providing partitioned pre-trained machine
learning models at network edge devices for collaboratively
making decisions. Collaborative inference can utilize the com-
puting resources on several devices to reduce the latency and
energy consumption of inference tasks while maintaining high
accuracy and protecting local data privacy.

A primary research focus in collaborative inference is bal-
ancing the trade-off between communication and computation.
Previous works have proposed several techniques to reduce the
communication and computation overhead, such as network
pruning and early exiting [6], [7]. However, these works did
not consider the task-oriented property of edge inference,
where the accuracy and efficiency of the inference task is the
ultimate goal rather than reducing communication distortion
[8]. As pointed out by [9], different feature elements with
the same size and distortion level may impact the inference
accuracy differently. Moreover, existing works only considered
the data transmission stage and neglected the impact of the
data acquisition process on inference performance. [10]–[12]
proposed an integrated sensing-communication-computation
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(ISCC) scheme for collaborative inference to jointly optimize
the cooperation of sensing, computation, and communication
at edge devices.

In the conventional ISCC-based collaborative inference sys-
tems mentioned above, local features extracted from radar
sensing signals are transmitted to a central server and input
to the machine learning models for the inference task [11],
[12]. In some scenarios, however, the central server is not
always available and steadily connected to all devices (e.g.,
swarms of drones or cooperative automated driving [13]).
This necessitates the devices to connect and communicate
via device-to-device (D2D) links to share their features and
reach a consensus for inference tasks. Additionally, the de-
centralized network offers scalability for completing more
tasks on different devices. This approach can overcome the
limitations of traditional centralized co-inference schemes.
However, sequentially aggregating local features to all de-
vices from others causes a high communication overhead. To
improve communication efficiency in decentralized networks,
the technique of full-duplex communication [14], [15] and
over-the-air computation are introduced to transmit and receive
signals with different antennas simultaneously.

In this paper, we propose a decentralized ISCC system
for multitask collaborative inference. Each device is equipped
with both receive and transmit antennas. First, all devices
sense the target in the same wide view and derive noised
sensory data. Then, a singular value decomposition (SVD)
based filter is applied for clutter signal elimination and a low-
dimension local feature vector is extracted by principal com-
ponent analysis (PCA). Local feature vectors on all devices
are shared through full-duplex communication and over-the-
air computation (AirComp) [15]. By adopting the criterion of
maximum minimum pair-wise discriminant gain which reflects
the inference accuracy [12], we propose a multi-objective joint
sensing power allocation, multicast, and receive beamforming
problem. The challenge to solve this problem arises from
three aspects: the impact of the self-interference (SI) channel
imposed by simultaneously transmitting and receiving features
with full-duplex communication, the design of pre-coding of
each device needing to fit multiple coupled tasks, and the
coupling among the sensing, computation, and communication
processes. These challenges lead to a high-complexity problem
difficult to solve. To address these issues, we first design the
multicast beamforming vectors to utilize the SI channel and
aggregate its local feature with features transmitted from other
devices. Then, we jointly designed the precoders of all devices
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Fig. 1. The system architecture of the proposed ISCC framework.

for fitting all tasks and formulated a multi-objective problem
by summarizing the minimum pair-wise discriminant gains
of all tasks. Finally, we applied a successive approximation
method and proposed an alternating algorithm to derive a sub-
optimal solution to this complex problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model
Consider a decentralized network of K ISAC devices for

co-inference between devices with a central server not always
available for devices, as illustrated in Fig. 1. Each device is
equipped with a dual-functional-radar-communication (DFRC)
system containing Nt transmit antennas and Nr receive anten-
nas. It is assumed that Nt >> K and Nr >> K to ensure
a suffcient degree of freedom (DoF) in communication. All
devices obtain the same wide-view sensory data from a sensing
target via signals on orthogonal sensing frequencies where
local feature vectors of M dimensions are extracted. Utilizing
full-duplex communication and the AirComp technique [15],
every device broadcasts its local features to all other devices
and aggregates features from other devices simultaneously to
derive a denoised global feature vector. To transmit all feature
elements at the same time, the OFDM technique is leveraged.
All M dimensions of local feature vectors are transmitted in
M orthogonal subcarriers. Given that the duration to transmit
one feature element is significantly shorter than the channel
coherence time [16], channels are assumed to be static within
a single time slot. All devices are assumed to have the channel
state information (CSI) of links connecting to all other devices.
Finally, the aggregated feature vector is fed into a pre-trained
AI model to carry out the inference task.

B. Sensing Signal Processing and Feature Extraction
We adopt the models for sensing signal process and feature

extraction as proposed in [11]. During the radar sensing stage,
each device transmits a frequency modulation continuous wave
(FMCW) signal sk(t) in total sensing time Ts, and the received
signal of ISAC device k reflected from the target is given by

rk(t) = uk(t) +

J∑
j=1

vk,j(t) + nr(t), (1)

where uk(t) = Hs,k(t)sk(t − τ) is the desired signal for
completing the inference task with Hs,k(t) being the reflec-
tion matrix of the target and τ being the round-trip delay,
vk,j(t) = Cr,k,j(t)sk(t − τj) is the clutter of j-th indirect

reflection path with Cs,k,j(t) being the round-trip coefficient
of path j and τj being the delay of the j-th path, and nr(t)
is the white Gaussian noise. It is assumed that Hs,k(t) and
Cs,k,j(t) are estimated before the inference task.

In (1), the desired signal uk(t) is polluted by the additive
sensing clutter and noise. Subsequently, we introduce the
clutter cancellation procedure as detailed in [11]. The received
signal of device k is sampled at a frequency of fs into a com-
plex feature vector rk ∈ CNT0fs and replaced into a complex
matrix Rk ∈ CT0fs×N , the column dimension of which is
usually used for ranging and the row dimension contains the
feature in the Doppler spectrum shift. To utilize the SVD-based
linear filter for clutter cancellation, Rk is decomposed into∑I
i=1 uiσiv

H
i where I = min{T0fs, N}, ui, σi and vi are

the i-th left singular vector, singular value and right singular
vector of Rk. Then the principal and least dimensions of Rk

are deprecated, resulting in R̃k =
∑r2
i=r1

uiσiv
H
i . Here r1 and

r2 are empirical parameters that vary based on different types
of radar sensors. Since only the information in row dimension
is useful to the inference task, R̃k is compressed vertically
into a vector r̃k

r̃k =

T0fs∑
j=1

R̃j,1k , . . . ,

T0fs∑
j=1

R̃j,Nk

 . (2)

Following [9], [11], the PCA-based linear extractor is used
to extract the local feature vector from clutter-canceled sensory
data r̃k ∈ C1×N . The PCA is pre-performed at a server before
the inference task using the training dataset. Then, the template
of the M principal eigen-subspace is sent to all devices for
extracting the local feature vectors {r̄k ∈ RM} with M being
the number of extracted feature elements. Since the clutter
cancellation and feature extraction processes are linear and
based on (1), the m-th feature element of r̄k is given by

r̃k(m) = ũk(m) +

J∑
j=1

ṽk,j(m) + nr(m), (3)

where ũk(m) is the ground-truth of feature m, ṽk,j(m) is the
clutter of j-th path in J paths, nr(m) is the noise in Gaussian
distribution N

(
0, σ2

r

)
. Next, each feature element of device

k is normalized by its sensing power Ps,k and the normalized
feature element m is given by

xk(m) =
r̃k(m)√
Ps,k

= x(m) + cs,k(m) +
nr(m)√
Ps,k

, (4)

where x(m) = ũk(m)/
√
Ps,k is the normalized ground-truth

feature and cs,k(m) =
∑J
j=1

(
ṽk,j(m)/

√
Ps,k

)
denotes the

normalized clutter. Since clutter is rich scattering, J is very
large, and cs,k(m) follows a zero-mean Gaussian distribution
N
(

0, σ2
s,k

)
according to the central limit theorem.

Consider a classification task with L classes. Following [9],
[11], the ground-truth feature vector x is assumed to follow
a Gaussian mixture distribution. Since PCA is performed,
different elements of the ground-truth feature vector are in-
dependent. Specifically, the distribution of element x(m) is
given as

f(x(m)) =
1

L

L∑
`=1

f`(x(m)), (5)



where f`(x(m)) = N
(
µ`,m, σ

2
m

)
is the probability density

function of the Gaussian component corresponding to the `-th
class, µ`,m is the centroid of class ` and σ2

m is the variance.
These parameters are pre-estimated using the training dataset.
Based on (5) and the distributions of clutters and noise, we
can derive the distribution of local feature element xk(m) as

xk(m) ∼ 1

L

L∑
`=1

N
(
µ`,m, σ

2
m + σ2

s,k +
σ2
r

Ps,k

)
. (6)

C. Broadband Decentralized AirComp
In the decentralized co-inference system shown in Fig. 1,

every device needs to broadcast and receive local features with
all other devices to collect a denoised feature. The technique
of AirComp (see e.g., [17], [18]) has been introduced to
aggregate data symbols through transmitting over the same
carrier by exploiting the waveform superposition property.
Conventional methods like sequentially aggregating features
at each device will cause the communication delay to increase
linearly with the number of devices. To address this issue,
full-duplex communication (see e.g., [14], [15]) is adopted for
feature aggregation. In this scheme, all devices broadcast their
local feature simultaneously using multicast beamforming and,
at the same time, receive the over-the-air aggregated signals
from other devices. All devices are assumed to be synchro-
nized via a common clock.

Specifically, consider an arbitrary subcarrier to aggregate an
arbitrary feature dimension m. For device j, the local feature
element xj(m) is first modulated with a multicast beamformer
pj,m and then the signal is transmitted over a multiple-input-
multiple-output (MIMO) channel to all other devices. The
aggregated received signal at device k is given by

yk(m) =
∑
j 6=k

Hj,kpj,mxj(m) + Hk,kpk,mxk(m) + wk(m),

(7)
where Hj,k ∈ CNr×Nt is the channel gain from device j
to device k, particularly when j = k, Hk,k represents the
channel gain of device k’s self-interference channel, pj,m
is the multicast beamformer of device j and wk is the
additive white Gaussian noise following the distribution of
N (0, N0I). To aggregate the features xj(m) transmitted from
other devices with its local feature xk(m), the multicast beam-
former is designed to exploit the self-interference channel.
As mentioned, the channel matrix Hj,k remains static for
aggregating all feature elements. After receiving the feature
yk(m), a receive beamforming vector fk,m ∈ CNr is applied
to extract the feature vector x̂k(m)

x̂k(m) = fHk,myk(m)

=

K∑
j=1

fHk,mHj,kpj,mxj(m) + fHk,mwk(m).
(8)

It is worth noticing that all beamformers are computed at
the server and then transmitted to all devices. Similar to (6),
the distribution of x̂k(m) can be further derived as

f (x̂k(m)) =
1

L

L∑
`=1

f`(x̂k(m)), 1 ≤ m ≤M. (9)

Then, all dimensions of the local feature vectors from all
devices are aggregated over M orthogonal subcarriers in the
same way and used for the k-th inference task.

III. PROBLEM FORMULATION

In this work, the metric of maximum minimum pair-wise
discriminant gain [12] is adopted to achieve a balanced in-
ference accuracy based on the received feature distribution
in (9). For a classification task, a pair-wise discriminant gain
G`,`′(x̂k(m)) measures the distance of two classes ` and `′

in feature space. A larger pair-wise discriminant gain leads
to a better separation of the corresponding pair of classes
in the feature space and results in an improved achievable
inference accuracy. Thus, maximizing the minimum pair-wise
discriminant gain guarantees the closest class pair can be well
separated. Thereby, since different feature elements x̂k(m)
are independent, the minimum pair-wise discriminant gain of
x̂k = [x̂k(1), . . . , x̂k(m), . . . , x̂k(M)]T is written as

Gmin (x̂k) = min
1≤` 6=`′≤L

M∑
m=1

G`,`′ (x̂k(m)) . (10)

Thus, the objective is to maximize the weighted sum of the
minimum pair-wise discriminant gains of all devices

max

K∑
k=1

ηkGmin (x̂k) , (11)

where ηk is the weight of minimum pair-wise discriminant
gain Gmin (x̂k).

ISAC devices are usually designed for easy deployment
and suffer the drawback of limited energy and computation
resources (see e.g., [11], [12]). Consider an arbitrary device
k, the energy consumption is comprised of three aspects, the
sensing energy consumption Ps,kTs,k with sensing power Ps,k
and fixed sensing time Ts,k, the constant energy consumption
for local feature extraction denoted as Ep,k, and energy
consumption to transmit the m-th feature element through Air-
Comp with power Pc,k(m) = pHk,mE

[
xk(m)xk(m)H

]
pk,m.

Since the distribution of xk(m) is known in (5), its variance
is determined and is denoted as Xk(m) = E

[
xk(m)xk(m)H

]
.

It follows that the energy consumption constraint of device k
can be derived as

Ps,kTs,k + Ep,k + Tc

M∑
m=1

‖pk,m‖2Xk(m) ≤ Ek, (12)

where Ek is the energy threshold of device k and Tc is the
duration time of AirComp. Also, due to the energy limitation,
the receive beamforming vector fk,m is constrained with
‖fk,m‖2 = 1 to only control the angle of arrival (AoA).

Accordingly, the problem of maximizing the minimum
pair-wise discriminant gain under the energy consumption
constraint can be formulated as

P1 max
{Ps,k},

{fk,m},{pj,m}

K∑
k=1

ηk

{
min

1≤` 6=`′≤L

M∑
m=1

(µ̂`,k,m − µ̂`′,k,m)
2

σ̂2
k,m

}
,

(13a)

s.t. Ps,kTs + Ep + Tc

M∑
m=1

‖pk,m‖2Xk(m) ≤ Ek,

(13b)
‖fk,m‖2 = 1, (13c)



where

µ̂`,k,m =

 K∑
j=1

fHk,mHj,kpj,m

µ`,m,

σ̂2
k,m = σ2

k,m

 K∑
j=1

fHk,mHj,kpj,m

2

+

K∑
j=1

(
σ2
s,j +

σ2
r

Ps,j

)(
fHk,mHj,kpj,m

)2
+N0 ∗ ‖fk,m‖2.

are the mean and variance of the distribution of x̂k(m).

IV. JOINT SENSING POWER ALLOCATION, MULTICAST
AND RECEIVE BEAMFORMING

The problem P1 formulated in Section III has a non-convex
minimax form, which makes the problem difficult to solve.
To solve this complex problem, first, auxiliary variables are
introduced to decouple the objective, and approximation and
relaxation are adopted to convert the non-convex constraints.
Then, an alternating method is utilized to optimize the mul-
ticast beamforming vector pj,m and the receive beamforming
vector fk,m in turns, resulting in two convex sub-problems
with respect to pj,m and fk,m.

A. Variable Substitution
First, αk is defined as the minimum pair-wise discriminant

gain of device k to decouple the objective

αk = min
1≤` 6=`′≤L

M∑
m=1

G`,`′ (x̂k(m)) , ∀(k, `, `′), (14)

where as a result, the original problem is equivalent to the
problem that maximizes the weighted sum of αk under the
constraints of all pair-wise discriminant gain being no less
than αk and the energy consumption from P1

P2

max
{Ps,k},{fk,m},
{pj,m},{αk}

K∑
k=1

ηkαk,

s.t. (13b), (13c),
M∑
m=1

(µ̂`,k,m − µ̂`′,k,m)
2

σ̂2
k,m

≥ αk.

Then, to simplify the non-convex ratio in the form of pair-
wise discriminant gain, we denote β`,`′,k,m as the discriminant
gain of class pair (`, `′) of element m in device k

Z`,`′,k,m ({Ps,j}, {pj,m}, fk,m)

= Q`,`′,k,m ({pj,m}, fk,m, β`,`′,k,m) ,
(15)

where

Z`,`′,k,m ({Ps,j}, {pj,m}, fk,m) , σ̂2
k,m,

Q`,`′,k,m ({pj,m}, fk,m, β`,`′,k,m)

,
(µ`,k,m − µ`′,k,m)

2

β`,`′,k,m

 K∑
j=1

fHk,mHj,kpj,m

2

.

M∑
m=1

β`,`′,k,m − αk ≥ 0 (16)

The feasible region of this new equality constraint can be
extended as in (17) while keeping the same optimal solution
to P2 [12, Lemma 2].

Z`,`′,k,m ({Ps,j}, {pj,m}, fk,m)

≤ Q`,`′,k,m ({pj,m}, fk,m, β`,`′,k,m) ,
(17)

Thus, P2 can be equivalently reformulated as follows

P3
max

{Ps,k},{fk,m},{pj,m},
{αk},{β`,`′,k,m}

K∑
k=1

ηkαk,

s.t. (13b), (13c), (16), (17).

B. Approximation and Alternating Algorithm
The new problem P3 is still non-convex due to the

constraint (13c) and (17). First, the convex relaxation tech-
nique is utilized to relax the unit modulus constraint (13c)
to an inequality ‖fk,m‖2 ≤ 1. Then a successive approx-
imation method is adopted to iteratively approximate P3
with a new problem P4 and then solve P4 to update
the reference point. Consider the received signal power of
an arbitrary feature element cj,k,m = fHk,mHj,kpj,m and
convert the parameter of Q`,`′,k,m ({pj,m}, fk,m, β`,`′,k,m)
into Q`,`′,k,m ({cj,k,m}, β`,`′,k,m), which is a convex func-
tion. Thus, it can be proved that, for an arbitrary round t,
Q`,`′,k,m ({cj,k,m}, β`,`′,k,m) is no less than its first-order
Taylor expansion at

(
{c[t]j,k,m}, β

[t]
`,`′,k,m

)
Q`,`′,k,m ({cj,k,m}, β`,`′,k,m)

≥ Q[t]
`,`′,k,m ({cj,k,m}, β`,`′,k,m) ,

(18)

where c[t]j,k,m = f
[t]
k,m

H
Hj,kp

[t]
j,m.

By substituting the right-hand side function in (17) with
Q

[t]
`,`′,k,m ({cj,k,m}, β`,`′,k,m), an approximated problem of

P3 can be derived as

P4

max
{Ps,k},{fk,m},{pj,m},
{αk},{β`,`′,k,m}

K∑
k=1

ηkαk,

s.t. (13b), (16),
‖fk,m‖2 ≤ 1,

Z`,`′,k,m ({Ps,j}, {pj,m}, fk,m)

≤ Q[t]
`,`′,k,m ({cj,k,m}, β`,`′,k,m) .

Since P4 is convex with respect to fk,m and pj,m, its sub-
optimal solution can be derived by alternatively solving the
sub-problem of fixing fk,m and (pj,m, Ps,k) with the reference
point f [t]k,m and (p

[t]
j,m, P

[t]
s,k), respectively, until convergence.

• Sub-problem P5: Fix pj,m, Ps,k and update fk,m:

P5

max
{fk,m},{αk},
{β`,`′,k,m}

K∑
k=1

ηkαk,

s.t. ‖fk,m‖2 ≤ 1, (16),
Z`,`′,k,m (fk,m)

≤ Q[t]
`,`′,k,m (fk,m, β`,`′,k,m) .



Algorithm 1 Joint Sensing Power Allocation, Multicast and
Receive Beamforming Design
Input: Channel gain {Hj,k}, Device energy Ek
Output: {P ∗s,k}, {p∗j,m}, {f∗k,m}

1: Initialize t = 0, {P [0]
s,k}, {p

[0]
j,m}, {f

[0]
k,m}, α

[0]
k , β[0]

`,`′,k,m in
feasible region of P3;

2: Initialize function Q[0]
`,`′,k,m

(
{p[0]

j,m}, f
[0]
k,m, β

[0]
`,`′,k,m

)
;

3: repeat
4: Derive the approximated problem P4;
5: repeat
6: Update fk,m by solving P5;
7: Update pj,m, Ps,k by solving P6;
8: until convergence
9: Update function Q[t+1]

`,`′,k,m

(
{p[t+1]

j,m }, f
[t+1]
k,m , β

[t+1]
`,`′,k,m

)
;

10: t← t+ 1;
11: until convergence
12: Optimal solution P ∗s,k ← P

[t]
s,k, c∗k,m ← c

[t]
k,m, f∗m ← f

[t]
m ;

• Sub-problem P6: Fix fk,m and update pj,m, Ps,k:

P6

max
{Ps,k},{pj,m},
{αk},{β`,`′,k,m}

K∑
k=1

ηkαk,

s.t. (13b), (16),
Z`,`′,k,m ({Ps,j}, {pj,m})
≤ Q[t]

`,`′,k,m ({pj,m}, β`,`′,k,m) .

Since the received signal power cj,k,m is only relevant to
fk,m or pj,m while fixing the other, the parameters of function
Q

[t]
`,`′,k,m is changed into fk,m or pj,m, respectively. The sub-

optimal solution f
[t+1]
k,m , p[t+1]

j,m , P [t+1]
s,k is then used to derive

the new received signal power c[t+1]
j,k,m = f

[t+1]
k,m

H
Hj,kp

[t+1]
j,m ,

which is in the feasible region of P4. Then P4 is updated for
the next round t+ 1.

Based on the approximation and alternating method de-
scribed before, the solution procedure to P3 is summarized
in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation Settings
1) Network settings: A decentralized network consisting of

3 ISAC devices is simulated for inference tasks. Each device
is equipped with 8 transmit antennas and 8 receive anten-
nas. Distances between devices are in the range of [0.4km,
0.45km]. The channel gains of the link between devices are
modeled as Hj,k = |ϕj,kρj,k|2. [ϕj,k]dB = −[PLj,k]dB +
[ζj,k]dB is the large-scale fading channel coefficient, where
[PLj,k]dB = 128.1 + 37.6 log10 dj,k is the path loss in dB,
dj,k is the distance between device j and device k, and
[ζj,k]dB ∼ N (0, σ2

ζ ) is the shadowing in dB. On the other
hand, ρj,k ∼ CN (0, I) stands for the Rayleigh small-scale
fading channel coefficient. The variances of sensing noise σ2

r
and clutter signal σ2

s,k are both set to 0.2. The channel noise
variance N0 is set to 1 and the variance of shadow fading
σ2
ζ = 8 dB. The sensing time Ts and communication time

Tc of devices are set to 1 second and the computation energy
Ep,k is set to 0.1 Joule.

2) Inference tasks and models: In this experiment, the
University of Glasgow Radar Signature dataset [19] is used
to evaluate the performance of the proposed algorithm. This
dataset contains the radar echo signals of different motions of
103 people in all age groups at nine different locations. Data
corresponding to five motions are selected for the recognition
task: walking, sitting down, standing up, picking up an object,
and drinking water. Based on the dataset, each device is
assigned a different task along with a machine learning model
that demonstrated the best performance during the training
phase:
• The task of device 1 is to identify the target’s motion from

5 motions with a K-Nearest Neighbour (KNN) model
where K = 5.

• The task of device 2 is to distinguish the gender of the
target with a support vector machine (SVM) model.

• The task of device 3 is to separate the age group of the
target (e.g., [0, 30] or [30, 50] or [50,]) with a multi-layer
perceptron (MLP) neural network where the numbers of
neurons in the hidden layers of MLP set to 80 and 40.

The dataset contains 1500 samples in total and is divided into
90% training dataset and 10% testing dataset. The training
dataset is considered the ground-truth data when training all
ML models at a powerful server and then the trained model
are transmitted to each device and used for inference. The
testing dataset is distorted by sensing and communication
noise determined by the two schemes mentioned below.

3) Inference algorithms: The proposed algorithm and base-
line scheme are described below
• Our proposal: All parameters are allocated by the pro-

posed scheme in Algorithm 1.
• Baseline: The sensing power is allocated to a constant,

and the multicast and receive beamforming vectors are
set to a constant during all elements’ transmission.

B. Performance Comparison
1) Inference accuracy v.s. device energy: Fig. 2 shows the

impact of the device’s total energy on the accuracy of the
inference task on three devices. The results indicate that a
higher upper limit of energy leads to better inference accuracy.
This is because a higher device energy threshold indicates that
the devices can allocate more sensing power and communica-
tion power to suppress the clutter distortion and resist channel
fading and channel noise. Moreover, our proposal outperforms
the baseline since the sensing power and beamforming vectors
are not adjusted to different feature elements in the baseline
scheme. Besides, the accuracy of task 2 is much higher than
the other two tasks, which is might because task 2 is much
simpler than task 1 and task 3.

2) Inference accuracy v.s. feature dimensions: Fig. 3 illus-
trates the inference accuracy of three tasks under different fea-
ture dimensions. The performance of all three tasks increases
as the feature dimension increases. This is because different
feature dimensions are orthogonal and independent from the
algorithm of PCA. It follows that more feature dimensions
can store more data about the target, which improves the
performance of inference tasks. In addition, the proposed
scheme reaches a higher accuracy on all three tasks.
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Fig. 2. Inference accuracy of three tasks on corresponding devices versus different device energy.
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Fig. 3. Inference accuracy of three tasks on corresponding devices versus different feature dimensions.

VI. CONCLUSION

This paper proposed a decentralized AirComp based ISCC
system tailored for multitask collaborative inference. Our
proposed scheme facilitates simultaneous multicast and Air-
Comp aggregation of local features of all devices through
full-duplex communication, which makes the communication
overhead irrelevant to the number of devices. We exploited
the self-interference channel in full-duplex communication to
aggregate features from one device itself with others, reducing
the cost of computation resources. Leveraging these benefits,
our proposed scheme shows a better inference performance in
experiments. This new scheme paves the way for broader ap-
plications with massive ISCC devices for distributed learning.
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